Architecture Manual

CLIPS Version 5.1

January 6th 1992

CLIPS Architecture Manual
Version 5.1 January 6th 1992

CONTENTS
P B A e [
ACKNOWI B G EM BN S . i s %
LR oo H¥ o2 o X o B PR 1
System Dependent ModuUle.... ... 5
MEMOTY MOG UL .o 7
Symbol Manager Module. ... 17
ROUTEr MOG UL . e 27
SCaANNEr MOAUIE ..o 35
EXPression MOdUIe. ... e 41
Special FOrms MOAUIE. ... e 49
Parser ULIITY MOdUIe. ... e 53
Evaluation ModuUle. ... 57
Command Line ModUle. ... 63
Construct Manager MOdUIe.......oiiiii e 69
ULIHHEY MOAUIE. . e 75
Fact Manager MOAUIE. e 85
Fact Commands Module ... 93
Deffacts Manager MOdUIe. ..o e 95
Defglobal Manager Module ... 101
Defrule Parser ModuUIe. ... 109
Reorder Module. ... 117

CLIPS Architecture Manual i

Variable Manager Module ... e 121

ANAlYSIS MOAUIE ..o 127
Generate MOAUIE.o 135
BUITA MOAUIE. ... 143
Drive MOAUIE .o 149
ENngine ModuUle. ... 161
MAatCh MOAUIE . e 171
Retract MO UL ... e 177
Rete Utility MOAUIE ... e, 181
Logical Dependencies Module.........cooiiiiiiiiii 187
Defrule Manager ModuUle. ... e, 195
Defrule Deployment ModuUle.o 203
Defrule Commands MOdUIE ... 205
Deftemplate Commands Module..........ooi e, 207
Deftemplate Functions Module.........coooiii i, 217
Deftemplate Parser Module. 225
Deftemplate LHS MoOdUI... ... e, 229
Binary Save MoOdUIE ... 233
Binary Load ModUIe. ..o 243
Construct Compiler Module.... ... 251
Primary FUNCtions ModuUle.........ooiiiii e, 261
Predicate Functions Module....... ..o 263
/O FUNCEIONS MOAUIE. ..o e 265
Secondary Functions Module. 267

i Table of Contents

Multifield FUNCLIONS MOAUIo e 269

String FUNCHIONS MOAUIE. ... e 271
Math Functions Module.... ... 273
Text Processing Functions Module.........cooiiiiiiiiiii e 275
File Commands MoOdUIE.......oii e 277
DeffunCtion MOAUI e 279
Generic Function Commands Module.........cooiiiiiiiiii e 289
Generic Function Functions Module..........oooiii e 299
Generic Function Construct Compiler Interface Module........................ 311
Generic Function Binary Load/Save Interface Module.......................... 313
Class Commands MOAUIE.....c.oiii i e 315
Class FUNCLIONS MOAUIE ... e 329
Instance Commands MOAUIE.......oiiii e 345
Instance FUNCLioNS MOdUIE... ... e, 357
Message-Handler Commands Module............coooiiiiiiiiii i, 369
Message-Handler Functions Module..........c.oooii 379
Instance-Set QuUeries ModUle.. ..o, 395
Definstances ModuUle. ... oo 413
Object Construct Compiler Interface Module.............coooiiiiiiiiiiiinns 417
Object Binary Load/Save Interface Module...........cooiiiiiiiiii i 419
MaAIN MO UL ... e 421
0 G 423

CLIPS Architecture Manual i

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to
1984 at NASA’s Johnson Space Center. At this time, the Atrtificial Intelligence Section
(now the Software Technology Branch) had developed over a dozen prototype expert
systems applications using state-of-the-art hardware and software. However, despite
extensive demonstrations of the potential of expert systems, few of these applications
were put into regular use. This failure to provide expert systems technology within
NASA'’s operational computing constraints could largely be traced to the use of LISP
as the base language for nearly all expert system software tools at that time. In
particular, three problems hindered the use of LISP based expert system tools within
NASA: the low availability of LISP on a wide variety of conventional computers, the
high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP
with other languages (making embedded applications difficult).

The Atrtificial Intelligence Section felt that the use of a conventional language, such as
C, would eliminate most of these problems, and initially looked to the expert system
tool vendors to provide an expert system tool written using a conventional language.
Although a number of tool vendors started converting their tools to run in C, the cost of
each tool was still very high, most were restricted to a small variety of computers, and
the projected availability times were discouraging. To meet all of its needs in a timely
and cost effective manner, it became evident that the Artificial Intelligence Section
would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two
months. Particular attention was given to making the tool compatible with expert
systems under development at that time by the Artificial Intelligence Section. Thus, the
syntax of CLIPS was made to very closely resemble the syntax of a subset of the ART
expert system tool developed by Inference Corporation. Although originally modelled
from ART, CLIPS was developed entirely without assistance from Inference or access
to the ART source code.

The original intent of the prototype was to gain useful insight and knowledge about the
construction of expert system tools and to lay the groundwork for the construction of a
fully usable tool. The CLIPS prototype had numerous shortcomings, however, it
demonstrated the feasibility of the project concept. After additional development, it
became apparent that sufficient enhancements to the prototype would produce a low
cost expert system tool that would be ideal for the purposes of training. Another year of
development and internal use went into CLIPS improving its portability, performance,
and functionality. A reference manual and user’'s guide were written during this time.

CLIPS Architecture Manual i

The first release of CLIPS to groups outside of NASA, version 3.0, occurred in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS,
released respectively in the summer and fall of 1987, featured greatly improved
performance, external language integration, and delivery capabilities. Version 4.2 of
CLIPS, released in the summer of 1988, was a complete rewrite of CLIPS for code
modularity. Also included with this release were an architecture manual providing a
detailed description of the CLIPS software architecture and a utility program for aiding
in the verification and validation of rule-based programs. Version 4.3 of CLIPS,
released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining
rule language based on the Rete algorithm (hence the Production System part of the
CLIPS acronym). Version 5.0 of CLIPS, released in the spring of 1991, introduced two
new programming paradigms: procedural programming (as found in languages such
as C and Ada) and object-oriented programming (as found in languages such as the
Common Lisp Object System and Smalltalk). The object-oriented programming
language provided within CLIPS is called the CLIPS Object-Oriented Language
(COOL).

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The
development of CLIPS has helped to improve the ability to deliver expert system
technology throughout the public and private sectors for a wide range of applications
and diverse computing environments. CLIPS is being used by over 3,300 users
throughout the public and private community including: all NASA sites and branches
of the military, numerous federal bureaus, government contractors, 170 universities,
and many companies. CLIPS is available at a nominal cost through COSMIC, the
NASA software distribution center (for more on COSMIC, see appendix E of the Basic
Programming Guide).

CLIPS Version 5.1

Version 5.1 of CLIPS is primarily a software maintenance upgrade required to support
the newly developed and/or enhanced X Window, MS-DOS, and Macintosh interfaces.
For a detailed listing of differences between versions 4.3, 5.0, and 5.1 of CLIPS, refer
to appendix D of the Basic Programming Guide.

CLIPS Documentation

Three documents are provided with CLIPS.

ii Preface

» The CLIPS Reference Manual which is split into the following parts:

* Volume | - The Basic Programming Guide, which provides the definitive
description of CLIPS syntax and examples of usage.

* Volume Il - The Advanced Programming Guide, which provides detailed
discussions of the more sophisticated features in CLIPS and is intended for
people with extensive programming experience who are using CLIPS for
advanced applications.

e Volume Il - The Utilities and Interfaces Guide, which provides information on
machine-specific interfaces and CLIPS utility programs.

* The CLIPS User's Guide which provides an introduction to CLIPS and is intended
for people with little or no expert system experience.

* Volume | - Rules, which provides an introduction to rule-based programming
using CLIPS.

 Volume Il - Objects, which provides an introduction to object-oriented
programming using COOL.

» The CLIPS Architecture Manual which provides a detailed description of the
CLIPS software architecture. This manual describes each module of CLIPS in
terms of functionality and purpose. It is intended for people with extensive
programming experience who are interested in modifying CLIPS or who want to
gain a deeper understanding of how CLIPS works.

CLIPS Architecture Manual i

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The
primary contributors have been: Robert Savely, head of the STB, who conceived the
project and provided overall direction and support; Frank Lopez, who wrote the
original prototype version of CLIPS; Gary Riley, who rewrote the prototype and is
responsible for most of the kernel code; Chris Culbert, who managed the project, wrote
the original CLIPS Reference Manual, and designed the original version of CRSV; Dr.
Joseph Giarratano of the University of Houston-Clear Lake, who wrote the CLIPS
User's Guide; Brian Donnell, who designed and developed the CLIPS Object Oriented
Language (COOL); and Bebe Ly, who is responsible for maintenance and
enhancements to CRSV.

Many other individuals contributed to the design, development, review, and general
support of CLIPS, including: Jack Aldridge, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham,
Dan Danley, Kirt Fields, Kevin Greiner, Ervin Grice, Sharon Hecht, Patti Herrick, Mark
Hoffman, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed Lineberry, Bowen Loftin,
Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott Meadows, C. J.
Melebeck, Paul Mitchell, Steve Mueller, Cynthia Rathjen, Reza Razavipour, Marsha
Renals, Monica Rua, Gregg Swietek, Eric Taylor, James Villarreal, Lui Wang, Jim
Wescott, Charlie Wheeler, and Wes White.

CLIPS Architecture Manual \Y

Introduction

This manual provides an architecture description for version 5.0 of CLIPS. Each
module of the CLIPS program is described in terms of its functionality and purpose. In
addition, significant variables and functions (both local and global to the modules) are
described. All functions relating to a given module are not necessarily listed. In other
cases, some function names may not directly correspond to their counterpart in the
CLIPS source code. This manual is intended partly as a set of instructions for building
CLIPS from scratch and partly as a roadmap to the 'C' implementation of CLIPS.

Function and variable names will be shown in boldface when they are referred to in
a sentence. Other words which may cause confusion when used in a sentence will
also be shown in boldface. For example, the word and can refer either to the function
and or to the conditional element and.

This manual is written with the assumption that the reader has a basic understand-
ing of the Rete Match Algorithm. A good source for information on the Rete Match Algo-
rithm is Charles Forgy's Ph.D. Dissertation, “On the Efficient Implementation of
Production Systems.” It can be obtained from

University Microfilms International
300 N. Zeeb Road

Ann Arbor, Ml 48106

(313) 761-4700

Another source for information is Charles Forgy's article “Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem.” This can be found in Artificial
Intelligence 19, pp. 17-37, 1982.

Document Overview

The modules described in this document are listed in order beginning with the lower-
level modules and ending with the higher-level modules. The higher-level modules
generally require the lower-level modules to operate.

The first four modules (System Dependent, Memory, Symbol Manager, and Router)
provide basic support for very low-level CLIPS operations. The System Dependent
Module (sysdep.c) implements system-dependent features such as timing functions.
The Memory Module (memory.c) is used to efficiently allocate and maintain memory
requests. The Symbol Manager Module (symbol.c) is used to avoid storage
duplication for multiple occurrences of symbols, floats, and integers. It also assures
that storage is not used for symbols, floats, and integers that are no longer in use. The
Router Module (router.c) handles input/output (I/O) requests and allows these requests
to be redirected to different 1/O handlers. This redirection capability allows
sophisticated interfaces to be built on top of the CLIPS kernel without making changes
to the code.

The next eight modules (Scanner, Expression, Special Forms, Parser Utility,
Evaluation, Command Line, Construct Manager, and Utility) provide the basic
functionality necessary for expression evaluation, construct support, and the CLIPS
command line interface. The Scanner Module (scanner.c) reads tokens from an input
source. The Expression Module (expressn.c) builds expressions from tokens returned
by the Scanner Module. The Special Forms Module (spclform.c) is used for parsing

CLIPS Architecture Manual 1

functions that do not conform with the standard syntax for function expressions (such
as the assert function). The Parser Utility Module (parsutil.c) contains some utility
functions useful for parsing both functions and constructs. The Evaluation Module
(evaluatn.c) can evaluate expressions generated by the Expression Module. The
Command Line Module (commline.c) provides the necessary functionality for a com-
mand line interface. It also is capable of determining when an expression has been
formed from a series of input characters before it calls the Expression Module to build
an expression. It then calls the Evaluation Module to evaluate the expression. The
Construct Manager Module (constrct.c) provides the necessary support for registering
constructs so that they are recognized by the CLIPS parser. It calls the appropriate
routines needed by each construct for loading and parsing, resetting, and clearing.
The Utility Module (utility.c) provides a number of general purpose routines for printing
values, detecting errors, handling garbage collection, and registering items for use
with the watch command.

The Fact Manager Module (factmngr.c) is used to maintain the fact-list and provide
support for the creation of multifield values (by functions such as mv-append). The
Fact Commands Module (factcom.c) implements the top level interface for commands
such as assert and facts.

The Deffacts Module (deffacts.c) provides the capability needed to implement the
deffacts construct. The Defglobal Module (defglobl.c) provides the capability needed to
implement the defglobal construct.

The next six modules (Defrule Parser, Reorder, Variable Manager, Analysis,
Generate, and Build) are used to build the appropriate data structures for the defrule
construct. The Defrule Parser Module (ruleprsr.c) is used to parse the left-hand side
(LHS) of a rule, yielding an intermediate data structure. The Reorder Module
(reorder.c) transforms the LHS of a single rule containing and and or conditional
elements nested throughout the intermediate LHS data structure into an intermediate
data structure which contains at most a single or conditional element at the beginning
of the intermediate data structure. The Variable Manager Module (variable.c) checks
the patterns on the LHS of a rule for semantic errors involving variables. It also
maintains information about the location and usage of variables in the patterns of a
rule. The Analysis Module (analysis.c) works closely with the Variable Manager
Module to generate expressions for the rule that will be used in the join and pattern
networks. The Generate Module (generate.c) is used to generate the expressions
requested by the Analysis Module. The Build Module (build.c) is used to integrate the
new rule and its expressions into the join and pattern network.

The next six modules (Drive, Engine, Match, Retract, Rete Utility, and Logical
Dependencies) form the core of the CLIPS inference engine. The Drive Module
(drive.c) is used to update the join network when a fact has been added. The Engine
Module (engine.c) maintains the agenda and handles execution of the RHS of rules.
The Match Module (match.c) determines which patterns in the pattern network have
been matched when a fact has been added. The Retract Module (retract.c) is used to
update the join network when a fact is removed. The Rete Utility Module (reteutil.c)
provides useful utility functions used by other modules for maintaining the join
network. The Logical Dependencies Module (lgcldpnd.c) is used to maintain the links
between the join network and facts to support the logical conditional element.

The Defrule Manager Module (defrule.c) coordinates the activities of all modules
used for maintaining the defrule construct. The Defrule Deployment Module
(drulebin.c) provides the functionality needed to use the defrule construct with the

2 Introduction

bsave, bload, and constructs-to-c commands. The Defrule Commands Module
(rulecom.c) implements the top level interface for defrule commands.

The Deftemplate Command Module (deftmcom.c) is used for maintaining
deftemplates, providing type and value checking for deftemplate slots, providing the
top level interface for deftemplate commands, and providing the functionality needed
to use the deftemplate construct with the bsave, bload, and constructs-to-c
commands. The Deftemplate Function Module (deftmfun.c) is used for parsing assert,
modify, and duplicate commands which use deftemplate formats. The Deftemplate
Parser Module (deftmpsr.c) is used to parse the deftemplate construct. The
Deftemplate LHS Module (deftmlhs.c) is used to parse deftemplate patterns found on
the LHS of a rule.

The Binary Save Module (bsave.c) provides the functionality needed for the bsave
command, the Binary Load Module (bload.c) provides the functionality needed for the
bload command, and the Construct Compiler Module (constrct.c) provides the
functionality needed for the constructs-to-c command.

The next nine modules (Primary Functions, Predicate Functions, I/O Functions,
Secondary Functions, Multifield Functions, String Functions, Math Functions, Text
Processing Functions, and File Commands) provide functions and commands for a
variety of tasks. The Primary Functions Module (sysprime.c) provides a set of
environment commands and procedural functions.The Predicate Functions Module
(syspred.c) provides a number of predicates and simple mathematical functions
commonly used in CLIPS. The I/O Functions Module (sysio.c) provides a number of
functions convenient for performing [/O. The Secondary Functions Module
(syssecnd.c) provides a set of useful functions that perform a wide variety of useful
tasks. The Multifield Functions Module (multivar.c) provides a set of useful functions for
use with multifield values. The String Functions Module (strings.c) provides a set of
useful functions for manipulating strings. The Math Functions Module (math.c)
provides a set of useful math functions beyond the basic math functions provided by
the Predicate Functions Module. The Text Processing Module (textpro.c) provides a
set of useful functions for building and accessing a hierarchical lookup system for
multiple external files. The File Commands Module (filecom.c) provides a set of useful
interface commands that performs certain file operations not associated with standard
file I/O operations.

The Deffunction Module (deffnctn.c) provides the capability to define new
user-defined functions directly in CLIPS.

The next four modules implement overloaded functions which can be defined
directly in CLIPS: Generic Function Commands, Generic Function Functions, Generic
Function Construct Compiler Interface and Generic Function Binary Load/Save
Interface. Generic functions can do different things depending on the number and type
of arguments they receive. The Generic Function Commands Module (genrccom.c)
contains most of the parsing routines necessary for generic functions and their
methods. The Generic Function Functions Module (genrcfun.c) determines the
precedence between different methods of a generic function, provides the generic
dispatch when a generic function is actually called and contains various other
maintenance routines for generic functions and their methods. The Generic Function
Construct Compiler Interface (genrccmp.c) and the Generic Function Binary
Load/Save Interface Modules provide the interfaces for generic functions to the
constructs-to-c and bload/bsave commands.

CLIPS Architecture Manual 3

The next ten modules give all the functionality of the CLIPS Object-Oriented
Language (COOL): Class Commands, Class Functions, Instance Commands, Instance
Functions, Message-Handler Commands, Message-Handler Functions, Instance-Set
Queries, Definstances, Object Construct Compiler Interface and Object Binary
Load/Save Interface. The Class Commands Module (classcom.c) furnishes the
parsing and general interface routines for the defclass construct. The Class Functions
Module (classfun.c) handles all the internal manipulations of classes, including the
construction of class precedence lists from multiple inheritance. The Instance
Commands Module (inscom.c) provides the parsing and general interface functions for
instances of user-defined classes. The Instance Functions Module (insfun.c) deals with
the internal details of creating, accessing and deleting instances. The
Message-Handler Commands Module (msgcom.c) contains the parsing and general
interface routines for the procedural attachments to classes. The Message-Handler
Functions Module (msgfun.c) implements the message dispatch when a message is
actually sent to an object and maintains the internal details of the defmessage-handler
construct. The Instance-Set Queries Module (insquery.c) provides the routines for a
useful query system which can determine and perform actions on sets of instances of
user-defined classes that satisfy user-defined criteria. The Definstances Module
(defins.c) provides the capability needed to implement the definstances construct. The
Object Construct Compiler Interface (objcmp.c) and the Object Binary Load/Save
Interface (objbin.c) Modules provide the interfaces for COOL to the constructs-to-c
and bload/bsave commands.

The Main Module (main.c) contains the CLIPS startup function and should be the
only file modified to add extensions or to embed CLIPS under normal circumstances.

Portability Notes

There are a number of coding practices in the CLIPS code that in general have proven
to be portable among a wide variety of machines, but that are not guaranteed to be
portable for all ANSI C compilers. In particular, the conversion of integers to pointers
(and conversion back again expecting the original integer) is used quite extensively to
implement the bload/bsave commands. Strict ANSI C conformance does not
guarantee the portability of converting non-zero integers to pointers. Such a
conversion may involve a representation change which would cause a subsequent
conversion back to an integer to yield a value other than the original starting integer.
Some machines may also generate access violations when attempting to store
integers into pointer values when the integers represent invalid addresses. Also,
similar to typecasting integers to pointers, typecasting a pointer type into another
pointer type and expecting to be able to retrieve the original pointer is also not always
ANSI C conformant (depending upon the pointer types). The code may be changed to
be more portable in the next release. Compromises to functionality and efficiency will
be considered when making these determinations.

4 Introduction

System Dependent Module

The System Dependent Module (sysdep.c) maintains a set of functions that contains
system and/or machine dependent features (such as timing functions) and initialization
routines. The generic setting for CLIPS will compile the functions in this module to
forms which should run on any system or machine.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES
None.

GLOBAL FUNCTIONS

CatchControlC |

PURPOSE: A function which provides for interrupt handling. Used to
break execution when ctrl-C is pressed.

C IMPLEMENTATION: Handled on most machines by using the signal function.

genexit |

PURPOSE: Generic exit routine.

ARGUMENTS: Exit number. The number -1 indicates a normal exit from
CLIPS. The number 1 indicates CLIPS was unable to obtain
necessary memory; the number 2 indicates an arbitrary limit
has been exceeded; and the numbers 3 through 6 indicate
that an internal CLIPS error has occurred.

genrand |
PURPOSE: Generic random number generator function.
RETURNS: A randomly generated number (or zero if no random number

facility is available).

C IMPLEMENTATION: Handled on most machines by using the rand function.

genseed |

PURPOSE: Generic function for seeding the random number generator.

ARGUMENTS: An integer “seed” value.

CLIPS Architecture Manual 5

C IMPLEMENTATION: Handled on most machines by using the srand function.

gensystem |

PURPOSE: A generic function which access to Operating System (OS)
commands.

ARGUMENTS: A string which is a command to be executed by the OS.

gentime |

PURPOSE: A generic function for providing time information.

RETURNS: Current time as a floating-point number.

InitializeCLIPS |

PURPOSE: Performs initialization of CLIPS.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

InitializeNonportableFeatures |

PURPOSE: Performs machine-dependent initialization for features such
as interrupt handling.

RerouteStdin |

PURPOSE: Forces CLIPS to read input from a file when the -f option is
used when CLIPS is first started.

SystemFunctionDefinitions |

PURPOSE: Sets up the definitions of CLIPS system defined functions.

6 System Dependent Module

Memory Module

Allocation of memory occurs constantly during loading, browsing, and execution of
CLIPS programs. Memory allocation/deallocation is provided through two levels of
indirection. The first level of indirection provides separation from the system-level
allocation/deallocation functions. Functions genalloc and genfree (defined in the
Machine Dependent Module) provide the first level of indirection. Another level of indi-
rection is needed to allow for efficient memory usage. This second level of indirection
provides efficiency by taking advantage of the fact that data structures of the same size
are constantly being requested and freed by CLIPS. If memory is constantly being re-
guested from the system, freed to the system, and then immediately rerequested from
the system, a great deal of inefficiency can occur. If memory requested and then freed
by CLIPS is maintained by internal CLIPS memory management routines, much of the
overhead of constantly requesting, freeing, and rerequesting memory can be avoided.

The Memory Module also contains routines which perform block memory manage-
ment. These routines provide another level of indirection for memory management if
desired. Block memory management routines request large blocks of memory from the
system and split these large blocks to provide memory for smaller requests. On certain
machines, this can provide increased efficiency if the system-level memory manage-
ment routines are not very efficient at handling small blocks of memory.

CLIPS memory management of free memory blocks utilizes an array of pointers to
memory blocks (the MemoryTable). The array index refers to the memory size being
stored in that location. Requests for memory of sizes greater than the size of the
MemoryTable are requested from the system. A request with this range would re-
trieve the block of memory pointed to by the array (if one exists). Returned memory
would be added to the linked list of memory already stored in the array. The first four
bytes of all memory would be used as a pointer to the next block of memory (hence,
the 4-byte memory restriction for requests). Requests of less than four bytes are auto-
matically converted to 4-byte requests.

Functions defined in this module should be used by external functions that wish to
utilize memory in conjunction with the CLIPS kernel. The use of functions genalloc
and genfree should be avoided in external functions.

GLOBAL VARIABLES

MemoryTable |

PURPOSE: A table containing free memory of various sizes.

C IMPLEMENTATION: Currently implemented as an array of pointers to various
sizes of memory. For example, array location 7 would have a
pointer to the first free block of memory of size 7. Each
memory block uses its first four bytes as a pointer to the next
free block of memory; therefore, memory blocks of less than
size 4 cannot be stored in the memory table.

CLIPS Architecture Manual 7

TempMemoryPtr |

PURPOSE: Provides a global temporary pointer for use with deallocation
macros.
TempSize |
PURPOSE: Provides a global temporary integer for use with allocation of

variable size structure macros.

INTERNAL VARIABLES

BlockInfoSize |

PURPOSE: Amount of space needed to store information pertaining to a
block of memory. Only defined when block memory man-
agement is in use.

BlockMemorylnitialized |

PURPOSE: Boolean variable indicating whether block memory
management has been initialized. Only defined when block
memory management is in use.

ChunkInfoSize |

PURPOSE: Amount of space needed to store information pertaining to a
chunk of memory that has been allocated for use. Only
defined when block memory management is in use.

ConserveMemory |

PURPOSE: Boolean flag which indicates whether or not memory should
be conserved. If TRUE, then pretty print representations of
constructs are not stored.

MemoryAmount |

PURPOSE: Contains amount of memory allocated by CLIPS. Does not
include overhead associated with maintaining the memory.

MemoryCalls |

PURPOSE: Contains total number of outstanding memory requests.

8 Memory Module

OutOfMemoryFunction |

PURPOSE:

A pointer to a function which is to be called when CLIPS
cannot satisfy a memory request. This function either exits
CLIPS or attempts to free the requested amount of memory.

TopMemoryBlock |

PURPOSE:

GLOBAL FUNCTIONS

Pointer to the top block allocated by the block memory
manager. Only defined when block memory management is
in use.

ActualPoolSize |

PURPOSE: Indicates how much memory CLIPS has available in its free
pool. On IBM PC DOS machines, the overhead associated
with allocation is also included.

RETURNS: The number of bytes in the CLIPS free pool of memory (plus
overhead on IBM PC DOS machines).

| CopyMemory |
PURPOSE: Copies data structures from a source to a destination.
ARGUMENTS: The type of structures being copied, the number of structures

C IMPLEMENTATION:

to copy, a pointer to the destination memory, and a pointer to
the source memory.

Implemented as a macro. Calls the function genmemcpy to
copy the memory.

DefaultOutOfMemoryFunction |

PURPOSE:

ARGUMENTS:

RETURNS:

CLIPS Architecture Manual

The default function which is called when CLIPS runs out of
memory. Prints an “Out of memory” message.

The size of the memory block which could not be allocated
(this argument is unused).

A non-zero value indicating that the memory request cannot
be satisfied and that CLIPS should be exited.

genalloc

PURPOSE:

ARGUMENTS:
RETURNS:
OTHER NOTES:

Generic memory allocation function which provides a level of
indirection.

Size of memory requested.
A memory block of the appropriate size.

genalloc uses either malloc or RequestChunk
depending upon whether block memory allocation is being
performed. If genalloc cannot get the requested memory, it
will release all free memory used by CLIPS to the system. It
will then try to allocate the memory again, returning whether
it succeeds or fails. Note that this function is not called by the
CLIPS kernel with the exception of the Memory Module,
which provides another level of memory allocation
indirection.

genfree

PURPOSE:

ARGUMENTS:
OTHER NOTES:

Generic memory release function which provides a level of
indirection.

A block of memory and the memory size.

genfree uses either free or ReturnChunk depending
upon whether block memory allocation is being performed.
Note that this function is not called by the CLIPS kernel with
the exception of the Memory Module, which provides an-
other level of memory deallocation indirection.

genlongalloc |

PURPOSE:

ARGUMENTS:
RETURNS:
C IMPLEMENTATION:

10

Generic memory allocation function which provides a level of
indirection.

Size of memory requested as a long integer.
A memory block of the appropriate size.

If the size of an integer is the same as the size of a long
integer or if the long integer can be truncated to an integer,
then genalloc is used to satisfy the request. In addition,
special code is included to handle long integer memory
requests for the Macintosh and IBM PC computers. If the
request cannot be satisfied because the long integer value
cannot be truncated to an integer, then CLIPS is exited.

Memory Module

genlongfree |

PURPOSE: Generic memory release function which provides a level of
indirection.
ARGUMENTS: A block of memory and the memory size as a long integer.
genmemcpy |
PURPOSE: Generic memory copy function which provides a level of
indirection.
ARGUMENTS: A pointer to a block of memory to be copied, a pointer to a

block of memory to store the copied memory, and the
amount of memory to be copied.

RETURNS: No meaningful value.

genrealloc |

PURPOSE: Generic memory reallocation function which provides a level
of indirection.

ARGUMENTS: A block of memory, the size of the memory block, and the
new desired size of the memory block.

RETURNS: A memory block of the new size with the contents of the
original memory block.

OTHER NOTES: Current implementation is not very sophisticated. The new
block is allocated using genalloc, the content of the old
block is copied to the new block, and then the old block is
freed using genfree.

GetConserveMemory |

PURPOSE: Returns the current value of the ConserveMemory flag.

RETURNS: A boolean value.

get_struct |

PURPOSE: Allocates memory needed for a structure.
ARGUMENTS: A structure name.

C IMPLEMENTATION: Implemented as a macro. Uses the global variable
TempMemoryPtr to provide a temporary pointer.

CLIPS Architecture Manual 11

| get var_struct |

PURPOSE:
ARGUMENTS:

C IMPLEMENTATION:

Allocates memory needed for a structure of varying size.

A structure name and the size of the variable length portion
of the structure.

Implemented as a macro. Uses the global variable
TempMemoryPtr to provide a temporary pointer.

I gml

PURPOSE:

ARGUMENTS:

C IMPLEMENTATION:

Allocates a block of memory from the CLIPS maintained pool
of free memory. Initializes the contents of the memory to
zero.

Size of memory required.
Searches MemoryTable for free memory of the appropriate

size. Calls genalloc if it cannot find memory of the
appropriate size.

PURPOSE:

ARGUMENTS:

C IMPLEMENTATION:

Allocates a block of memory from the CLIPS maintained pool
of free memory. Does not initialize the contents of the
memory.

Size of memory required.
Searches MemoryTable for free memory of the appropriate

size. Calls genalloc if it cannot find memory of the
appropriate size.

| gm3

PURPOSE:

ARGUMENTS:

C IMPLEMENTATION:

Allocates a block of memory from the CLIPS maintained pool
of free memory. Does not initialize the contents of the
memory.

Size of memory required (a long integer).
Searches MemoryTable for free memory of the appropriate

size. Calls genlongalloc if it cannot find memory of the
appropriate size.

| MemoryRequests |

PURPOSE:

12

Returns number of memory requests currently outstanding.

Memory Module

RETURNS: Number of memory requests currently outstanding.

OTHER NOTES: Uses variables incremented and decremented by genalloc
and genfree.

MemoryUsed |
PURPOSE: Returns amount of memory currently allocated by CLIPS.
RETURNS: Amount of memory currently used by CLIPS.
OTHER NOTES: Uses variables incremented and decremented by genalloc

and genfree. May not include overhead memory.

PoolSize |
PURPOSE: Indicates how much memory CLIPS has available in its free
pool.
RETURNS: The number of bytes in the CLIPS free pool of memory.

ReleaseMemory |

PURPOSE: Releases a specified amount of free memory maintained by
CLIPS back to the system.

ARGUMENTS: A number which indicates when to stop. If the number is -1,
all memory will be released. Otherwise, the function will stop
when the amount of memory released has exceeded the
number. Another argument specifies whether a message is
to be printed when CLIPS releases memory.

RequestChunk |

PURPOSE: Allocates memory by returning a chunk of memory from a
larger block of memory.

ARGUMENTS: Size of memory needed.

C IMPLEMENTATION: Implemented using several functions.

ReturnChunk |
PURPOSE: Frees memory allocated using RequestChunk.
ARGUMENTS: A pointer to the memory and size of the memory.

C IMPLEMENTATION: Implemented using several functions.

CLIPS Architecture Manual 13

rm

PURPOSE:

ARGUMENTS:
C IMPLEMENTATION:

Returns a block of memory to the CLIPS maintained pool of
free memory.

A pointer to a block of memory and a size argument.

Adds memory to the appropriate location in the
MemoryTable. The first four bytes of the memory block are
modified to point to the next block of free memory of the
same size.

rm3

PURPOSE:

ARGUMENTS:
C IMPLEMENTATION:

Returns a block of memory to the CLIPS maintained pool of
free memory.

A pointer to a block of memory and a size argument.

Adds memory to the appropriate location in the
MemoryTable. The first four bytes of the memory block are
modified to point to the next block of free memory of the
same size. Calls genlongfree to return the memory if it can
not be placed in the MemoryTable.

rtn_struct

PURPOSE:

ARGUMENTS:
C IMPLEMENTATION:

Returns memory needed for a structure to the CLIPS
maintained pool of free memory.

A structure name and a pointer to the structure.

Implemented as a macro. Uses the global variable
TempMemoryPtr for temporary storage.

rtn_var_struct |

PURPOSE:

ARGUMENTS:

C IMPLEMENTATION:

Returns memory needed for a structure of varying size to the
CLIPS maintained pool of free memory.

A structure name, the size of the variable length portion of
the structure, and a pointer to the structure.

Implemented as a macro. Uses the global variables
TempMemoryPtr and TempSize for temporary storage.

SetConserveMemory |

PURPOSE:

14

Sets the current value of the ConserveMemory flag.

Memory Module

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

SetOutOfMemoryFunction |

PURPOSE: Allows the function which is called when CLIPS runs out of
memory to be changed.

ARGUMENTS: A pointer to a function which returns an integer and has a
single integer argument. The argument to the function is the
size of the memory request that could not be satisfied. The
return value of the function should be zero if CLIPS should
attempt to allocate the memory again or non-zero if CLIPS
should not attempt to allocate the memory again (and exit).

RETURNS: A pointer to the previous out of memory function.
UpdateMemoryRequests |
PURPOSE: Allows the number of memory requests to CLIPS to be
updated.
ARGUMENTS: A signed integer value to be added to the number of memory
requests currently outstanding.
RETURNS: Updated number of memory requests currently outstanding.
UpdateMemoryUsed |
PURPOSE: Allows the amount of memory used by CLIPS to be updated.
ARGUMENTS: A signed integer value to be added to the amount of memory

currently used by CLIPS.

RETURNS: Updated amount of memory currently used by CLIPS.

INTERNAL FUNCTIONS

AllocateBlock |

PURPOSE: Adds a new block of memory to the list of memory blocks.

ARGUMENTS: Size of new block and a pointer to the last block of memory
being managed by the memory manager.

CLIPS Architecture Manual 15

AllocateChunk |

PURPOSE: Allocates a chunk of memory for use. Called by

RequestChunk when it finds a memory chunk of the
appropriate size.

ARGUMENTS: A pointer to the memory block information record, a pointer

to the memory chunk information record, and the size of
memory requested.

RETURNS: Nothing. Updates information records for future memory

management.

InitializeBlockMemory |

PURPOSE: Initializes block memory management and allocates the first
block.
ARGUMENTS: Size of the initial block.

16

Memory Module

Symbol Manager Module

Symbolic data in the form of words and strings must be handled efficiently both in
terms of speed and storage management. CLIPS storage management of symbols
requires that multiple copies of a symbol be stored in the same location. To
accomplish this goal, CLIPS uses a SymbolTable to store all occurrences of
symbols. For example, the fact (data red green red) would require three entries in the
SymbolTable: one each for the symbols data, red, and green. The SymbolTable
also must keep track of symbols that are no longer in use and remove them. To
accomplish this, each symbol is given a count to indicate the number of references to
the symbol. In the above example (assuming no other previous entries in the
SymbolTable), symbols data and green would each have a count of 1 while symbol
red would have a count of 2. If at any time a symbol has a count of 0O, it is no longer
necessary to maintain the symbol and it may be removed.

Symbols not expected to remain in the SymbolTable are labeled as ephemeral.
All symbols initially added to the SymbolTable are marked as ephemeral. These
symbols have a count of O but are not yet removed. The set of all ephemeral symbols
is maintained in a list. At certain times, the EphemeralSymbolList is traversed to
remove unneeded symbols from the SymbolTable. Ephemeral symbols that still
have a count of O are removed from the symbol table, while ephemeral symbols that
have a count greater than O are left in the SymbolTable and their ephemeral status
is lost. As an example, consider the following top-level command:

CLIPS> (str-cat "red" "blue")
"redbl ue"
CLI PS>

Four symbols are created during execution of this command. The symbols str-cat,
red, and blue are added to the SymbolTable when the command is parsed, and the
symbol redblue is added during the execution of the str-cat command. Each of these
symbols is labeled as ephemeral. After execution of this command, none of the
symbols is needed and all can be removed from the SymbolTable. Now consider the
following command:

CLIPS> (assert (data =(str-cat "red" "blue")))
CLI PS>

Six symbols are created during execution of this command. The symbols assert,
data, str-cat,red, and blue are added to the SymbolTable when the command is
parsed, and the symbol redblue is added during the evaluation of the str-cat
function. This command asserts the fact (data redblue) which contains the symbols
data and redblue. The locations in the SymbolTable of these two symbols will
have their count incremented by one to reflect that another non-ephemeral reference
to the symbol is being made. After execution of this command, the symbols assert,
str-cat, red, and blue could be removed from the SymbolTable, whereas the
symbols data and redblue would have to remain.

As stated previously, all symbols are initially marked as ephemeral. This ensures
that temporary symbols created during the parsing of commands and the evaluation of
functions are easily removed. A symbol can have its count incremented in a variety of
ways including the use of a symbol as part of a construct (such as a defrule, deffacts,

CLIPS Architecture Manual 17

or defclass) or the use of a symbol as part of a fact or an instance. As a corollary, the
count of a symbol is decremented whenever the corresponding item which refers to
that symbol is removed (such as deleting a construct or retracting a fact). The
EphemeralSymbolList is periodically checked for symbols that can be removed
from the SymbolTable. These periodic checks occur at various times including after
the execution of a rule, deffunction, generic function, message-handler, or top-level
command.

Because symbols can be created at different evaluation depths (see the Evaluation
Module), it is also necessary to store the evaluation depth at which the symbol was
created. Ephemeral symbols are not deleted unless they have a count of zero and the
ephemeral symbol is being removed at an evaluation depth less than the depth at
which the symbol was created.

In addition to symbols, floating point and integer values are also stored in tables.
Floating point values are stored in the FloatTable and integer values are stored in
the IntegerTable. The operation of these tables is virtually identical to the
SymbolTable (with the primary exception being that they are used to store floats and
integers rather than strings). The SymbolTable is used to store the values for the
CLIPS data types symbol, string, and instance name (i.e. red, "red", and [red] all
have the same location in the SymbolTable). The IntegerTable is only used for
storing the CLIPS data type integer and the FloatTable is only used for storing the
CLIPS data type float. Note that since each symbol, float, or integer data value is
represented by a unique pointer value into a table, comparisons of values can be
accomplished by comparing these pointer values (although types must also be
compared to distinguish between symbols, strings, and instance names).

Symbols can also be linked to other symbols via a relatedSymbol field. In CLIPS
5.1, this field is used only in COOL to conveniently determine the slot name symbol
from a slot-accessor message. For example, the get-temperature slot-accessor
symbol would be linked to the slot name symbol temperature.

GLOBAL VARIABLES

CLIPSFalseSymbol |

PURPOSE: A pointer, useful for comparison, to the symbol table entry of
the FalseSymbol generated using the AddSymbol
function.

CLIPSTrueSymbol |

PURPOSE: A pointer, useful for comparison, to the symbol table entry of
the TrueSymbol generated using the AddSymbol
function.

18 Symbol Manager Module

INTERNAL VARIABLES

| EphemeralFloatList |

PURPOSE: A list of pointers to ephemeral floats currently in the
FloatTable.

C IMPLEMENTATION: Implemented as a linked list.

| EphemeralintegerList |

PURPOSE: A list of pointers to ephemeral integers currently in the
IntegerTable.

C IMPLEMENTATION: Implemented as a linked list.

| EphemeralSymbolList |

PURPOSE: A list of pointers to ephemeral symbols currently in the
SymbolTable.

C IMPLEMENTATION: Implemented as a linked list.

| FalseSymbol |

PURPOSE: The character string that CLIPS uses for the boolean value
FALSE. The value of this string is “FALSE", however, it could
be changed to another value such as “WRONG".

| FloatTable |

PURPOSE: Stores all floats used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
float table entries. Collisions are resolved by adding the float
entry to list of entries.

| IntegerTable |

PURPOSE: Stores all integers used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
integer table entries. Collisions are resolved by adding the
integer entry to list of entries.

| SymbolTable |

PURPOSE: Stores all symbols used by CLIPS.

CLIPS Architecture Manual 19

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
symbol table entries. Collisions are resolved by adding the
symbol entry to list of entries.

TrueSymbol |

PURPOSE: The character string that CLIPS uses for the boolean value
TRUE. The value of this string is “TRUE", however, it could
be changed to another value such as “RIGHT".

GLOBAL FUNCTIONS

AddDouble |
PURPOSE: Adds a double precision floating-pointer number to the
FloatTable.
ARGUMENTS: A double precision floating point number that is to be added
to the FloatTable.
RETURNS: The address of the float entry structure for the given number
in the FloatTable.
AddLong |
PURPOSE: Adds a long integer to the IntegerTable.
ARGUMENTS: A long integer that is to be added to the IntegerTable.
RETURNS: The address of the integer entry structure for the given
integer in the IntegerTable.
AddSymbol |
PURPOSE: Adds a symbol to the SymbolTable.
ARGUMENTS: A string that is to be added to the SymbolTable.
RETURNS: The address of the symbol entry structure for the given string

in the SymbolTable.

DecrementFloatCount |

PURPOSE: Decrements the count value for a FloatTable entry. Adds
the float to the EphemeralFloatList if the count becomes
zero.

ARGUMENTS: AFloatTable entry.

20 Symbol Manager Module

| DecrementintegerCount |

PURPOSE: Decrements the count value for an IntegerTable entry.
Adds the integer to the EphemerallntegerList if the count
becomes zero.

ARGUMENTS: AnIntegerTable entry.

| DecrementSymbolCount |

PURPOSE: Decrements the count value for a SymbolTable entry.
Adds the symbol to the EphemeralSymbolList if the count
becomes zero.

ARGUMENTS: A SymbolTable entry.

| FindSymbol |
PURPOSE: Determines if a symbol is already in the SymbolTable.
ARGUMENTS: A string that is to be searched for in the SymbolTable.
RETURNS: If the string is contained in the SymbolTable, the address

of the symbol entry structure for the given string in the
SymbolTable is returned, otherwise NULL is returned.

| FindSymbolMatches |

PURPOSE: Finds all symbols in the SymbolTable which begin with a
specified symbol. This function is used to implement the
command completion feature found in some of the CLIPS
machine specific interfaces.

ARGUMENTS: A pointer to a string and a pointer to an integer.
RETURNS: Returns a pointer to a list of symbols which begin with the

specified sequence of characters. The number of matches is
stored in the integer passed as an argument.

| GetFloatTable |

PURPOSE: Returns a pointer to the FloatTable.
RETURNS: A pointer to the FloatTable.
OTHER NOTES: Normally used by the construct compiler and binary save to

gain access to the FloatTable.

CLIPS Architecture Manual 21

GetlntegerTable |

PURPOSE: Returns a pointer to the IntegerTable.
RETURNS: A pointer to the IntegerTable.
OTHER NOTES: Normally used by the construct compiler and binary save to

gain access to the IntegerTable.

GetNextSymbolMatch |

PURPOSE: Finds the next symbol in the SymbolTable which begins
with a specified symbol. This function is used to implement
the command completion feature found in some of the
CLIPS machine specific interfaces.

ARGUMENTS: A pointer to a string, the number of characters to use in
performing the comparison of strings, and the previous
symbol in the symbol table which was checked.

RETURNS: Returns a pointer to the next SymbolTable entry which
begins with the specified sequence of characters.

GetSymbolTable |

PURPOSE: Returns a pointer to the SymbolTable.

RETURNS: A pointer to the SymbolTable.

OTHER NOTES: Normally used by the construct compiler and binary save to
gain access to the SymbolTable.

HashFloat |

PURPOSE: Computes a hash value for a float.

ARGUMENTS: A float and maximum value for the hash value.

RETURNS: An integer hash value which is less than the maximum

value.

C IMPLEMENTATION: The float number is converted to a long integer through the
use of a union structure to yield a hash value. This value is
then divided by the maximum value and the remainder is
returned.

HashlInteger |

PURPOSE: Computes a hash value for an integer.

22 Symbol Manager Module

ARGUMENTS: An integer and maximum value for the hash value.

RETURNS: An integer hash value which is less than the maximum
value.

C IMPLEMENTATION: The integer value is used as the hash value. This value is
then divided by the maximum value and the remainder is

returned.
| HashSymbol |
PURPOSE: Computes a hash value for a symbol.
ARGUMENTS: A string and maximum value for the hash value.
RETURNS: AnI integer hash value which is less than the maximum
value.

C IMPLEMENTATION: The characters of the string are grouped together to form
long integers which are then added together to yield a hash
value. This value is then divided by the maximum value and
the remainder is returned.

| IncrementFloatCount |

PURPOSE: Increments the count value for a FloatTable entry.

ARGUMENTS: AFloatTable entry.

| IncrementintegerCount |

PURPOSE: Increments the count value for an IntegerTable entry.

ARGUMENTS: AniIntegerTable entry.

| IncrementSymbolCount |

PURPOSE: Increments the count value fora SymbolTable entry.

ARGUMENTS: A SymbolTable entry.

| InitializeAtomTables |

PURPOSE: Initializes the SymbolTable, IntegerTable, and
FloatTable. It also initializes the CLIPSTrueSymbol and
CLIPSFalseSymbol.

CLIPS Architecture Manual 23

RefreshBooleanSymbols |

PURPOSE: Resets the values of the CLIPSTrueSymbol and the
CLIPSFalseSymbol.

OTHER NOTES: Normally called during initialization of a run-time module
generated using the constructs-to-c function.

RemoveEphemeralAtoms |

PURPOSE: Causes the removal of all ephemeral symbols, integers, and
floats, that still have a count value of zero, from their
respective storage tables. This function performs this action
by calling the functions RemoveEphemeralSymbols,
RemoveEphemeralintegers, and
RemoveEphemeralFloats.

ReturnSymbolMatches |

PURPOSE: Returns a set of symbol matches.

ARGUMENTS: A pointer to a list of symbol matches found using the
FindSymbolMatches function.

SetFloatTable |

PURPOSE: Sets the value of the FloatTable.
ARGUMENTS: A pointer to a FloatTable.
OTHER NOTES: Normally used by a run-time module generated using the

constructs-to-c function to install the FloatTable.

SetintegerTable |

PURPOSE: Sets value of the IntegerTable.
ARGUMENTS: A pointer to a IntegerTable.
OTHER NOTES: Normally used by a run-time module generated using the

constructs-to-c function to install the IntegerTable.

SetSymbolTable |

PURPOSE: Sets value of the SymbolTable.
ARGUMENTS: A pointer to a SymbolTable.

24 Symbol Manager Module

OTHER NOTES: Normally used by a run-time module generated using the
constructs-to-c function to install the SymbolTable.

INTERNAL FUNCTIONS

AddEphemeralFloat |

PURPOSE: Adds a float to the EphemeralFloatList.
ARGUMENTS: AFloatTable entry.
OTHER NOTES: Typically called when a float is added to the FloatTable or

when a float's count value reaches zero.

AddEphemeralinteger |

PURPOSE: Adds an integer to the EphemeralintegerList.

ARGUMENTS: AnIntegerTable entry.

OTHER NOTES: Typically called when an integer is added to the
IntegerTable or when an integer's count value reaches
zero.

AddEphemeralSymbol |

PURPOSE: Adds a symbol to the EphemeralSymbolList.

ARGUMENTS: A SymbolTable entry.

OTHER NOTES: Typically called when a symbol is added to the
SymbolTable or when a symbol's count value reaches
zero.

RemoveEphemeralFloats |

PURPOSE: Removes all ephemeral floats from the FloatTable that still
have a count value of zero and were created at a evaluation
depth greater than the current evaluation depth. Uses the
EphemeralFloatList to determine which floats to check.
Floats that have a count greater than zero are removed from
the EphemeralFloatList.

RemoveEphemeralintegers |

PURPOSE: Removes all ephemeral integers from the IntegerTable
that still have a count value of zero and were created at a
evaluation depth greater than the current evaluation depth.

CLIPS Architecture Manual 25

Uses the Ephemeral IntegerList to determine which
integers to check. Integers that have a count greater than
zero are removed from the EphemeralintegerList.

| RemoveEphemeralSymbols |

PURPOSE: Removes all ephemeral symbols from the SymbolTable
that still have a count value of zero and were created at a
evaluation depth greater than the current evaluation depth.
Uses the EphemeralSymbolList to determine which
symbols to check. Symbols that have a count greater than
zero are removed from the EphemeralSymbolList.

| RemoveFloat |

PURPOSE: Removes a float from the FloatTable.

ARGUMENTS: AFloatTable entry.

| Removelnteger |

PURPOSE: Removes an integer from the IntegerTable.
ARGUMENTS: AnIntegerTable entry.

| RemoveSymbol |
PURPOSE: Removes a symbol from the SymbolTable.
ARGUMENTS: A SymbolTable entry.

26 Symbol Manager Module

Router Module

The Router Module (router.c) provides a level of indirection between low-level 1/0O
implementations and high-level requests for I/O. All high-level requests for I/O are di-
rected to logical names. The logical names are then associated with specific I/O
implementations. Changing the CLIPS interface using this technique is now made
very easy. To change the interface from a command line interface to a windowed
interface only requires reassociating the appropriate logical names with I/O
implementations for windows. High-level requests do not need to be changed. More
details of the 1/0 Router mechanism can be found in Section 7 of the Advanced
Programming Guide.

GLOBAL VARIABLES

| CLIPSInputCount |

PURPOSE: Integer used to keep track of the number of characters
currently entered while CLIPS is accepting input. Used by
some of the machine specific interfaces to prevent backing
over output (such as the CLIPS prompt) when input is being

deleted.
| WCLIPS |
PURPOSE: Global variable which can be used to refer to the wclips
logical name.
| WDIALOG |
PURPOSE: Global variable which can be used to refer to the wdialog
logical name.
| WDISPLAY |
PURPOSE: Global variable which can be used to refer to the wdisplay
logical name.
| WERROR |
PURPOSE: Global variable which can be used to refer to the werror
logical name.
| WTRACE |
PURPOSE: Global variable which can be used to refer to the wtrace
logical name.

CLIPS Architecture Manual 27

INTERNAL VARIABLES

| Abort |

PURPOSE: Boolean flag which indicates if the ExitCLIPS call should
be aborted without exiting CLIPS.

| FastLoadFilePtr |

PURPOSE: Variable which indicates whether 1/O router system is to be
bypassed and input performed directly from a file.

C IMPLEMENTATION: IfFastLoadFilePtr is NULL, regular I/O router procedure is
used. If FastLoadFilePtr is not NULL, it is the file pointer to
which 1/O should be performed.

| FastSaveFilePtr |

PURPOSE: Variable which indicates whether 1/0O router system is to be
bypassed and output performed directly to a file.

C IMPLEMENTATION: If FastSaveFilePtr is NULL, regular I/O router procedure is
used. If FastSaveFilePtr is not NULL, it is the file pointer to
which 1/O should be performed.

| ListOfFileRouters |

PURPOSE: List of all defined file routers. File routers provide a
mechanism for reading and writing to files. File routers are
created using the open command.

| ListOfRouters |

PURPOSE: List of all defined I/O routers.

C IMPLEMENTATION: Router structure has information on router name, priority,
boolean active flag, query function, print function, exit func-
tion, get character function, unget character function, and a
pointer to the next router. The routers are linked in order of
priority.

| ListOfStringRouters |

PURPOSE: List of all defined string routers. String routers provide a
mechanism for reading input from a string or writing output to
a string.

28 Router Module

GLOBAL FUNCTIONS

AbortExit |

PURPOSE: Sets the value of the Abort flag to TRUE.

ActivateRouter |

PURPOSE: Activates a specified router.
ARGUMENTS: Name of router.
AddRouter |
PURPOSE: Adds an I/O router to the ListOfRouters. The router is

placed before routers with a lower priority and after routers
with a higher priority.

ARGUMENTS: Router name, priority, boolean active flag, query function,
print function, exit function, get character function, unget
character function.

OTHER NOTES: Routers are active when created.
CloseAllFiles |
PURPOSE: Closes all opened files.
CloseFile |
PURPOSE: Closes a file.
ARGUMENTS: The logical name associated with the file when opened with
OpenFile.

CloseStringDestination |

PURPOSE: Closes a string output destination.

ARGUMENTS: Name of string router used when created with
OpenStringDestination.

CloseStringSource |

PURPOSE: Closes a string input source.

ARGUMENTS: Name of string router used when created with
OpenStringSource.

CLIPS Architecture Manual 29

DeactivateRouter |

PURPOSE: Deactivates a specified router.
ARGUMENTS: Name of router.

DeleteRouter |

PURPOSE: Removes an /O router from the ListOfRouters.
ARGUMENTS: Name of I/O router.
RETURNS: Boolean value. TRUE if the router was successfully deleted,

otherwise FALSE.

ExitCLIPS |
PURPOSE: High-level CLIPS exit routine. Calls all router exit functions
before calling genexit function.
ARGUMENTS: Exit number.
FindFile |
PURPOSE: Determines if a file which the specified logical name has
been opened.
ARGUMENTS: A logical name.
RETURNS: Boolean value. TRUE if a file with the specified logical name
has been opened, otherwise FALSE.
FindFptr |
PURPOSE: Returns a pointer to an opened file.
ARGUMENTS: A logical name.
RETURNS: Boolean value. A pointer to the specified file, if found,
otherwise NULL.
GetcCLIPS |
PURPOSE: High-level request function to get a character.
ARGUMENTS: Logical name from which character is requested.
RETURNS: A character.

30 Router Module

OTHER NOTES: Routine must check for FastLoadFilePtr and
FastSaveFilePtr.

GetFastLoad |

PURPOSE: Returns the value of the variable FastLoadFilePtr.

GetFastSave |

PURPOSE: Returns the value of the variable FastSaveFilePtr.

InitializeDefaultRouters |

PURPOSE: Initializes the standard I/O routers used by CLIPS (file and
string).
OpenFile |
PURPOSE: Opens a file for input or output by creating a file router.
ARGUMENTS: The name of the file, the mode in which the file is to be

opened (read, write, etc.), and the logical name to be
associated with the file.

OpenStringDestination |

PURPOSE: Allows a string to be used as an output destination by
creating a string router.

ARGUMENTS: Name to be associated with the string router, the string to
which output is sent, and the maximum number of characters
that can be sent to the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

OpenStringSource |

PURPOSE: Allows a string to be used as a source of input by creating a
string router.

ARGUMENTS: Name to be associated with the string router, the string from
which input is read, and the starting location within the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

CLIPS Architecture Manual 31

OpenTextSource |

PURPOSE: Allows a string to be used as a source of input by creating a
string router. Since this function allows the maximum
number of characters which can be read from the string to
be specified, it is useful for reading from strings which are
not NULL terminated and for reading from a substring of a
string.

ARGUMENTS: Name to be associated with the string router, the string from

which input is read, the starting location within the string, and

the maximum number of characters which can be read from
the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

PrintCLIPS |
PURPOSE: High-level request function to print a string.
ARGUMENTS: A string to print and the logical name to which the string is to
be printed.
OTHER NOTES: Routine must check for FastLoadFilePointer and
FastSaveFilePointer.
QueryRouters |
PURPOSE: Determines if any router recognizes a logical name.
ARGUMENTS: Logical name.
RETURNS: Boolean value. TRUE if the logical name is recognized by
any router, otherwise FALSE.
SetFastLoad |
PURPOSE: Sets value of the variable FastLoadFilePtr.
ARGUMENTS: Value to which FastLoadFilePtr is to be set.
SetFastSave |
PURPOSE: Sets value of the variable FastSaveFilePtr.
ARGUMENTS: Value to which FastSaveFilePtr is to be set.

32 Router Module

| UngetcCLIPS |

PURPOSE:
ARGUMENTS:

OTHER NOTES:

High-level request function to unget a character.

Logical name to which character is ungotten and the char-
acter to unget.

Routine must check for FastLoadFilePtr and
FastSaveFilePtr.

| UnrecognizedRouterMessage |

PURPOSE:

ARGUMENTS:

A generic error message which can be printed when a
logical name is not recognized by any routers.

The logical name which was unrecognized.

INTERNAL FUNCTIONS

| CreateReadStringSource |

PURPOSE:

ARGUMENTS:

RETURNS:

Drive routine for creating a string router for a string input
source.

Name to be associated with the string router, the string from
which input is read, the starting location within the string, and
the maximum number of characters which can be read from
the string.

Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

| File Router Functions |

PURPOSE: Set of functions needed to handle file routers. Note that this
Is not a single function but actually a series of functions.
| QueryRouter |
PURPOSE: Determines if a specific router recognizes a logical name.
ARGUMENTS: Logical name and an 1/O router.
RETURNS: Boolean value. TRUE if the logical name is recognized by

CLIPS Architecture Manual

the router, otherwise FALSE.

33

String Router Functions |

PURPOSE:

Set of functions needed to handle string routers. Note that
this is not a single function but actually a series of functions.

Router Module

Scanner Module

The Scanner Module (scanner.c) “scans” input sources for tokens recognizable by
CLIPS. The scanner receives input from logical names as described in the Router
Module. The scanner returns token information in a data structure with several fields.
One field indicates the type of token. For example, the token 783 would have type
INTEGER, the token (would have type LEFT_PARENTHESIS, and the token "cat"
would have type STRING. Another field in the token structure supplies the data value
for tokens which have a data value. In the example above, "cat" would have a data
value of "cat" (which would be a pointer to the symbol entry for "cat" in the
SymbolTable). Note that the symbol cat would have the same data value as the
string "cat". In addition, tokens also have a printed representation. The token ?x, for
example, would have token type VARIABLE, data type "x", and printed representation
"X

CLIPS produces a formatted representation for every parsed command or
construct. Since this formatting process is closely linked with the scanner, the routines
for creating this “pretty print” representation are included in the Scanner Module and
directly called by the scanner routines. Every token that is read using the Scanner
Module is placed in the PrettyPrintBuffer unless the buffer has been disabled. The
buffer is normally disabled during execution of a knowledge base (it is not normally
desirable to format input read from a file).

GLOBAL VARIABLES

IgnoreCompletionErrors |

PURPOSE: Boolean flag which indicates whether an error should be
signalled when a string is being scanned and an end-of-file
IS encountered.

INTERNAL VARIABLES

GlobalMax |

PURPOSE: The maximum number of characters which can be stored in
GlobalString.

GlobalPos |

PURPOSE: The current number of characters stored in GlobalString.

GlobalString |

PURPOSE: Buffer to store string data values for tokens.

CLIPS Architecture Manual 35

IndentationDepth |

PURPOSE: Used by the pretty print functions to determine how many
spaces to indent when an indentation command is given.
| PPBufferMax |
PURPOSE: The maximum number of characters which can be stored in

PrettyPrintBuffer.

PPBufferPos |

PURPOSE: The current number of characters stored in
PrettyPrintBuffer.

PrettyPrintBuffer |

PURPOSE: Buffer to maintain a “pretty” representation of the current
command or rule being parsed. Also requires several vari-
ables to keep track of current position in buffer.

PPBackupOnce |

PURPOSE: The position to which to backup in the PrettyPrintBuffer
the first time that PPBackup is called.

PPBackupTwice |

PURPOSE: The position to which to backup in the PrettyPrintBuffer
the second time that PPBackup is called.
| PPBufferStatus |
PURPOSE: Boolean flag which indicates whether parsed tokens should

be stored in the PrettyPrintBuffer.

GLOBAL FUNCTIONS

CopyPPBuffer |

PURPOSE: Makes a copy of the PrettyPrintBuffer.

RETURNS: A string copy of the PrettyPrintBuffer.

CopyToken |

PURPOSE: Copies values of one token to another token.

36 Scanner Module

ARGUMENTS: Source token and target token.

RETURNS: Nothing. Values of the target token will be set to values of the
source token.

DecrementindentDepth |

PURPOSE: Decrements IndentationDepth for pretty printing.

ARGUMENTS: Value by which IndentationDepth is to be decremented.
DestroyPPBuffer |

PURPOSE: Resets the state of the PrettyPrintBuffer to contain nothing

and returns the string associated with the pretty print
representation to the pool of free memory.

FlushPPBuffer |

PURPOSE: Resets state of the PrettyPrintBuffer to contain nothing.
GetPPBuffer |
PURPOSE: Returns a pointer to the PrettyPrintBuffer.
RETURNS: A pointer to the PrettyPrintBuffer.
GetPPBufferStatus |
PURPOSE: Returns the value of the PPBufferStatus flag.
RETURNS: Boolean value.
GetToken |
PURPOSE: Reads next token from the input stream.
ARGUMENTS: Logical name from which input is read and a pointer to a

token structure in which to store the scanned token.

RETURNS: Nothing. The pointer to the token data structure passed as
an argument is set to contain the type of token (e.g., symbol,
string, integer, etc.), the data value for the token (i.e., a
symbol table location if it is a symbol or string, an integer
table location if it is an integer), and the pretty print
representation.

CLIPS Architecture Manual 37

IncrementindentDepth |

PURPOSE: Increments IndentationDepth for pretty printing.

ARGUMENTS: Value by which IndentationDepth is to be incremented.
PPBackup |

PURPOSE: Backs up past last appended string to the

PrettyPrintBuffer.

OTHER NOTES: Should only have to be capable of backing up over last two
appended strings.

PPCRAnNdIndent |

PURPOSE: Prints a carriage return (CR) followed by a number of spaces
equal to the IndentationDepth of the PrettyPrintBuffer.

SavePPBuffer |
PURPOSE: Appends a string to the end of the PrettyPrintBuffer.
ARGUMENTS: String to append to buffer.

SetindentDepth |

PURPOSE: Sets IndentationDepth for pretty printing.

ARGUMENTS: Value to which IndentationDepth is to be set.
SetPPBufferStatus |

PURPOSE: Sets PPBufferStatus on or off.

ARGUMENTS: Boolean value. TRUE if PrettyPrintBuffer is to be turned

on; FALSE if PrettyPrintBuffer is to be turned off.

OTHER NOTES: PPBufferStatus should be on during rule or command
parse and off during rule execution.

StringPrintForm |

PURPOSE: Generates printed representation of a string. Replaces / with
/I 'and " with /".

ARGUMENTS: A string.

RETURNS: Printed representation of the string.

38 Scanner Module

INTERNAL FUNCTIONS

AppendStrings |

PURPOSE: Appends two strings together.

ARGUMENTS: Two pointers to strings.

RETURNS: A pointer to a string created by appending the two strings
passed as arguments. The string is added to the
SymbolTable so it is not necessary to deallocate the string
returned.

ScanNumber |

PURPOSE: Parses a number.

ARGUMENTS: Logical name from which input is read and a token data
structure to store the parsed value.

RETURNS: The parsed data value in the token structure passed as an

OTHER NOTES:

argument. The type of the token will either be an integer (in
which cause the value in the token will be an IntegerTable
entry), a float (in which cause the value in the token will be a
FloatTable entry), or a symbol otherwise (in which cause
the value in the token will be an SymbolTable entry). The
pretty print representation of the data value will also be
stored in the token.

See the Basic Programming Guide for a detailed
explanation of the integer and float data types. Note that any
data value that first appears to be a number, but does not
satisfy the requirements of a number is treated as a symbol
(e.g. 37-A).

ScanString

PURPOSE:
ARGUMENTS:
RETURNS:

OTHER NOTES:

Parses a string.
Logical name from which input is read.
SymbolTable entry for the string.

See the Basic Programming Guide for a detailed
explanation of the string data type.

ScanSymbol |

PURPOSE:

CLIPS Architecture Manual

Parses a symbol.

39

ARGUMENTS:

RETURNS:
OTHER NOTES:

40

Logical name from which input is read, the number of char-
acters in the symbol that have already been placed in the
StringBuffer, and integer value for storing the symbol's
type (since a symbol may actually be an instance name).

SymbolTable entry for the symbol.

See the Basic Programming Guide for a detailed
explanation of the symbol data type.

Scanner Module

Expression Module

The standard format used by CLIPS for expressions is very similar to a LISP format. In
general, expressions follow the format

(function-nane argl arg2 ... argn)

where each argument may be an expression, a typeable primitive data type (symbol,
string, integer, float, or instance name, but not external address or instance), or a
variable (either local or global). The function name refers either to a system or user
defined function, a deffunction, or a generic function. All of the following would be valid
CLIPS expressions:

(facts)
(+ (* 3 (- ?x 3)) 6)
(str-cat "red" "blue")

The Expression Module (expressn.c) contains routines which parse expressions
into a format which, in most cases, is suitable for evaluation by the Evaluation Module
(evaluatn.c). It also checks that the first symbol found in a function call is a function
name. The parsing of constructs (such as defrule and deffacts) is handled by the
Constructs Module (constrct.c). In addition, the parsing of certain CLIPS expressions
which do not conform to the standard expression format are handled by the Special
Forms Module (spclform.c).

The data structure used to store each component of an expression consists of a
type field (such as SYMBOL or INTEGER), a value field (such as a pointer to a
SymbolTable entry), a pointer to an argument list (for functions), and a pointer to the
next argument in the argument list. For example, the following expression

(+ (* 3 (- 8.32) 11) 6.5)
would be represented as shown following (with down pointing arrows representing the

argument list pointers and right pointing arrows representing the next argument
pointer).

Function
+
Funétion Y F(I;gt
Int{ger Y Func_:tion Y Intffer
F;)gt Y Int;ger

CLIPS Architecture Manual 41

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

| FunctionHashTable |

PURPOSE:

C IMPLEMENTATION:

Stores all of the system and user defined functions
registered with CLIPS by calling the function
DefineFunction. The functions entries are hashed in this
table so that any specified function can be retrieved quickly.

Implemented as an array. Each entry corresponds to a list of
function entry. Collisions are resolved by adding the function
entry to the list of entries.

| ListOfFunctions |

PURPOSE:

GLOBAL FUNCTIONS

Contains a linked list of all system and user defined
functions registered with CLIPS by calling the function
DefineFunction.

| AddFunctionParser |

PURPOSE:

ARGUMENTS:

Associates a specialized expression parsing function with
the function entry for a function which was defined using
DefineFunction. When this function is parsed, the
specialized parsing function will be called to parse the
arguments of the function. Only user and system defined
functions can have specialized parsing routines. Generic
functions and deffunctions can not have specialized parsing
routines.

Name of function for which the parsing function is to be
applied, and a pointer to the parsing function.

AddHashFunction |

PURPOSE: Adds a function entry to the FunctionHashTable.
ARGUMENTS: A function entry.

| ArgumentParse |
PURPOSE: Parses an argument within a function call expression.

42

Expression Module

ARGUMENTS: Logical name from which input is read, and a pointer to an
integer in which an error code is returned.

RETURNS: A pointer to an expression representing the next argument in
the function call. Note that this value may be null, indicating
that no further arguments exist. The error status is passed
back through the pointer to an integer passed as a
parameter.

CollectArguments |

PURPOSE: Parses and groups together all of the arguments for a
function call expression by repeatedly calling
ArgumentParse.

ARGUMENTS: Logical name from which input is read a pointer to the
function call expression to which the arguments are to be
attached.

RETURNS: The pointer to the function call expression with its arguments

attached. If an error occurs, the function call expression is
returned to the pool of free memory and NULL is returned.

ConstantExpression |

PURPOSE: Identifies expressions that are constants.

ARGUMENTS: An expression.

RETURNS: Returns TRUE if the expression is a constant (symbol, string,
integer, float, instance, or instance name), otherwise FALSE
is returned.

CopyExpression |

PURPOSE: Copies an expression.
ARGUMENTS: Expression to be copied.
RETURNS: A copy of the expression.
CountArguments |
PURPOSE: Returns the number of arguments associated with an

expression (i.e. how many arguments a function call has).

ARGUMENTS: An expression.

CLIPS Architecture Manual 43

RETURNS: Returns an integer value representing the number of
arguments found.

ExpressionContainsVariables |

PURPOSE: Determines if an expression contains any variables.

ARGUMENTS: An expression and a boolean flag indicating whether global
variables should be considered as variables.

RETURNS: Returns TRUE if the expression contains any variables,
otherwise FALSE is returned.

ExpressionDeinstall |

PURPOSE: Decrements count values for generic functions, deffunctions,
and constant values (such as symbols) for all such occur-
rences found in an expression.

ARGUMENTS: An expression.

Expressioninstall |

PURPOSE: Increments count values for generic functions, deffunctions,
and constant values (such as symbols) for all such occur-
rences found in an expression.

ARGUMENTS: An expression.

ExpressionSize |

PURPOSE: Returns the total number of nodes contained in an
expression.

ARGUMENTS: An expression (packed or unpacked).

RETURNS: Returns an integer value representing the total number of

nodes in the expression.

FunctionOParse |

PURPOSE: Parses a function call. Assumes that none of the functions
has been parsed yet.

ARGUMENTS: Logical name from which input is read.

RETURNS: A pointer to an expression. Returns null if an error occurs.

44 Expression Module

FunctionlParse |

PURPOSE:

ARGUMENTS:

RETURNS:

Parses a function call. Assumes that the opening left paren-
thesis of the function has already been parsed.

Logical name from which input is read.

A pointer to an expression. Returns null if an error occurs.

Function2Parse |

PURPOSE:

ARGUMENTS:

RETURNS:

Parses a function call. This routine is able to distinguish
between system and user defined functions, deffunctions,
and generic functions. If the routine has a specialized
parsing routine, then that routine will be called by this routine
in place of the default argument parsing routine. This routine
assumes that the opening left parenthesis and the name of
the function have already been parsed.

Logical name from which input is read and name of the
function to be parsed.

A pointer to an expression. Returns null if an error occurs.

FindFunction |

PURPOSE:

ARGUMENTS:

RETURNS:

Determines if a function has been defined using the function
DefineFunction.

A function name.

A pointer to the function entry if it exists, otherwise NULL.

GetFunctionList |

PURPOSE:

Returns the ListOfFunctions.

IdenticalExpression |

PURPOSE:
ARGUMENTS:
RETURNS:

CLIPS Architecture Manual

Determines if two expressions are identical.
Two expressions.

Returns TRUE if the expressions are identical, otherwise
FALSE is returned.

45

InstallFunctionList |

PURPOSE:

ARGUMENTS:

OTHER NOTES:

Sets the ListOfFunctions and adds all the function entries
to the FunctionHashTable.

A linked list of function entries.
Normally used by a run-time module generated using the

constructs-to-c function to install the list of functions used by
the module.

ListToPacked |

PURPOSE:

ARGUMENTS:

RETURNS:

Copies a list of expressions to an array.

A pointer to the expression list to be copied, a pointer to the
array to which the expression is to be copied, and an integer
index indicating the starting point in the array at which the
copying should begin.

The last array index into which the expression was copied.

PackExpression |

PURPOSE:

ARGUMENTS:
RETURNS:

Copies an expression (created using multiple memory
requests) into an array (created using a single memory
request) while maintaining all appropriate links in the
expression. A packed expression requires less total memory
because it reduces the overhead required for multiple
memory allocations.

The expression to be packed.

A copy of the expression packed into an array.

ParseAtomOrExpression |

PURPOSE:

ARGUMENTS:
RETURNS:

Parses an expression which may be a function call, atomic
value (string, symbol, etc.), or variable (local or global).

Logical name from which input is read.

A pointer to an expression. Returns NULL if an error occurs.

ParseConstantArguments |

PURPOSE:

46

Creates an argument list from a series of constants found in
a string.

Expression Module

ARGUMENTS: A string and a pointer to an integer.

RETURNS: A pointer to an expression. The integer passed as a
parameter is set to TRUE if an error occurs.

PrintExpression |

PURPOSE: Prints an expression.
ARGUMENTS: An expression and the logical name to which output is to be
sent.

RemoveFunctionParser |

PURPOSE: Removes a specialized expression parsing function (if it
exists) from the function entry for a function.

ARGUMENTS: Name of function whose parsing function is to be removed.

ReturnExpression |

PURPOSE: Returns an expression to the memory manager.
ARGUMENTS: An expression.
OTHER NOTES: If expression was installed using InstallExpression it

should be deinstalled using DeinstallExpression before
this function is called.

ReturnPackedExpression |

PURPOSE: Returns a packed expression created using
PackExpression to the memory manager.

ARGUMENTS: A packed expression.

OTHER NOTES: If expression was installed using InstallExpression it

should be deinstalled using DeinstallExpression before
this function is called.

SetFunctionList |

PURPOSE: Sets the ListOfFunctions.

ARGUMENTS: A linked list of function entries.

CLIPS Architecture Manual 47

INTERNAL FUNCTIONS

| InitializeFunctionHashTable |

PURPOSE: Initializes the FunctionHashTable.

48 Expression Module

Special Forms Module

Some CLIPS expressions do not conform to the standard expression format. An
example of this type of expression is the assert:

(assert (data 35))

The subexpression found within the assert (data 35) is not a function call to be
evaluated but, rather, a piece of data for the assert function. Special parsing is
required to allow this format for the assert function. Many other functions such as if,
while, bind, and retract either transform the expression in some special way or perform
additional syntax checking on the expression format. These functions all require
special parsing.

Specialized parsing functions are responsible for constructing an appropriate ex-
pression representation, as well as for making the appropriate calls to the pretty print
routines to format the expression correctly for output.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

| ListOfParsedBindNames |

PURPOSE: Contains the list of variables encountered by parsing the
bind function.

GLOBAL FUNCTIONS

| ClearParsedBindNames |

PURPOSE: Clears the ListOfParsedBindNames returning all
structures to the pool of free memory.

| GetParsedBindNames |

PURPOSE: Returns the ListOfParsedBindNames.

| InitializeSpecialForms |

PURPOSE: Initializes specialized parsing functions for assert, bind, if,
while, and retract. Also initializes several parsing functions
for some math and predicate functions which provide
additional error checking for the arguments of these
functions.

CLIPS Architecture Manual 49

| ParsedBindNamesEmpty |

PURPOSE: Indicates if any bind names have been parsed.

RETURNS: Returns TRUE if the ListOfParsedBindNames is NULL,
otherwise FALSE.

| SearchParsedBindNames |

PURPOSE: Searches the ListOfParsedBindNames for a particular
variable name.

ARGUMENTS: A variable name.

RETURNS: Returns TRUE if the variable was found, otherwise FALSE.

| SetParsedBindNames |

PURPOSE: Sets the value of the ListOfParsedBindNames.

ARGUMENTS: A new list of parsed bind names.

INTERNAL FUNCTIONS

| AssertParse |
PURPOSE: Handles special parsing of assert expression.
ARGUMENTS: Logical name from which input is read, and a pointer to the

expression function call.

RETURNS: Expression representing the assert function (or NULL if an
error occurs).

| AddBindName |

PURPOSE: Adds a variable name to the ListOfParsedBindNames.
ARGUMENTS: Name of the variable.

| BindParse |
PURPOSE: Handles special parsing of bind expression.
ARGUMENTS: Logical name from which input is read, and a pointer to the

expression function call.

50 Special Forms Module

RETURNS:

Expression representing the bind function (or NULL if an
error occurs).

CheckArgListParse |

PURPOSE:

ARGUMENTS:

RETURNS:

Handles parsing for functions which require a specified
number of arguments of either numeric or non-numeric
values.

Logical name from which input is read, a pointer to the
expression function call, an integer representing the
restriction on the arguments (EXACTLY, AT_LEAST,
NO_MORE_THAN, etc.), the number of arguments to which
the restriction applies, and a boolean value indicating
whether the arguments must be numeric.

Expression representing the parsed function (or NULL if an
error occurs).

IfParse

PURPOSE:
ARGUMENTS:

RETURNS:

Handles special parsing of if expression.

Logical name from which input is read, and a pointer to the
expression function call.

Expression representing the if function (or NULL if an error
occurs).

MultiArgNumericParse |

PURPOSE:

ARGUMENTS:

RETURNS:

Handles parsing for functions which require at least two
numeric arguments. Currently used by the following
functions: +,*,-,/,<=,>=,<,>,=,<> min, and max.

Logical name from which input is read, and a pointer to the
expression function call.

Expression representing the parsed function (or NULL if an
error occurs).

MultiArgParse |

PURPOSE:

ARGUMENTS:

CLIPS Architecture Manual

Handles parsing for functions which require at least two
arguments. Currently used by the following functions: and
and or.

Logical name from which input is read, and a pointer to the
expression function call.

51

RETURNS: Expression representing the parsed function (or NULL if an
error occurs).
NotParse |
PURPOSE: Handles parsing for functions which require exactly one
argument. Currently used by the not function.
ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.
RETURNS: Expression representing the parsed function (or NULL if an
error occurs).
RetractParse |
PURPOSE: Handles special parsing of retract expression.
ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.
RETURNS: Expression representing the retract function (or NULL if an
error occurs).
WhileParse |
PURPOSE: Handles special parsing of while expression.
ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.
RETURNS: Expression representing the while function (or NULL if an

52

error occurs).

Special Forms Module

Parser Utility Module

The Parser Utility Module (parsutil.c) provides a number of function which perform

various parsing tasks.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

BuildRHSAssert |

PURPOSE:

ARGUMENTS:

RETURNS:

Parses one or more RHS pattern and creates an assert
command from the patterns.

A pointer to an assert function call expression (which will be
converted to a progn if more than one pattern is to be
asserted), logical name from which input is read, a boolean
flag indicating if opening right parenthesis of the first RHS
pattern has already been parsed, and a pointer to a boolean
flag which indicates if a parsing error occurred.

A pointer to an expression (NULL if an error was
encountered). The parsing error flag is always set to either
TRUE or FALSE by this routine.

CompactActions |

PURPOSE: Converts a progn function call expression to a simpler
format if it contains less than two arguments. A progn with
no arguments if converted to an expression containing the
symbol FALSE. A progn with a single argument is
converted to an expression containing the single argument.

ARGUMENTS: A pointer to an expression.

RETURNS: A pointer to an expression.

GetAssertArgument |
PURPOSE: Parses a single argument for use within an assert command

CLIPS Architecture Manual

(e.g. a single symbol or variable).

53

ARGUMENTS:

RETURNS:

Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a
boolean flag which indicates whether a multifield value was
parsed, a pointer to a boolean flag which indicates if a
parsing error occurred, the type of token which indicates that
no more assert arguments are available (e.g. a right
parenthesis), a boolean flag indicating if only constants are
allowed to be parsed, and a boolean flag indicating whether
an error message should be printed by the calling function
when an error is detected by this function.

A pointer to an expression. The multifield flag and error flag
are set to TRUE if a multifield or error is encountered while

parsing. The print error message flag is always set to either
TRUE or FALSE by this routine.

| GetConstructNameAndComment |

PURPOSE:

ARGUMENTS:

RETURNS:

Parses the name and comment fields of a construct. If the
construct is being redefined, then the current definition of the
construct is deleted. If compilations are being watched then
this function will print out an informational message,
otherwise a single character is printed to indicate a new
construct is being defined.

Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, the name of
the construct type being parsed (e.g. defrule), a pointer to a
function which will delete the construct in case the parsed
construct is being redefined, the character symbol which is
printed to indicate a construct is being defined (e.g. ™' for
defrule), and a boolean flag indicating if a carriage return
should be printed after the long informational message when
compilations are being watched.

The name of the construct being parsed.

| GetRHSPattern |

PURPOSE:

ARGUMENTS:

Parses the type of pattern typically encountered on the RHS
of a rule for functions such as assert and modify, but can
also be found in constructs such as deffacts. A RHS pattern
consists of a left parenthesis, followed by one or more
primitive data types or variables, followed by a right
parenthesis. The fields in the RHS pattern may also be
specified using a deftemplate format.

Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a

Parser Utility Module

boolean flag which indicates whether a multifield value was
parsed, a pointer to a boolean flag which indicates if a
parsing error occurred, a boolean flag indicating if only
constants are allowed to be parsed, a boolean flag
indicating if opening right parenthesis of the RHS pattern
has already been parsed, and the type of token which
indicates the end of the RHS pattern (e.g. a right
parenthesis).

RETURNS: A pointer to an expression. The multifield flag and error flag
are set to TRUE if a multifield or error is encountered while
parsing.

OTHER NOTES: Primarily uses the function GetAssertArgument to parse

an ordered fact and the function ParseAssertTemplate to
parse a deftemplate fact.

GroupActions |

PURPOSE: Parses a series of actions and groups them together in a
progn command.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a boolean flag
indicating if first token of the group of actions has already
been parsed, and the string representation of the type of
token which indicates the end of the group of actions (in
addition to a right parenthesis).

RETURNS: A pointer to an expression (NULL if an error was
encountered).

ReadUntilClosingParen |

PURPOSE: Scans tokens until a matching closing right parenthesis is
found. This function assumes that an opening left
parenthesis has already been parsed before the function
was called and verifies that each left parenthesis
encountered has a matching right parenthesis.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: Boolean value. TRUE if the closing right parenthesis was
found, otherwise FALSE.
INTERNAL FUNCTIONS
None.

CLIPS Architecture Manual 55

56

Parser Utility Module

Evaluation Module

The Evaluation Module (evaluatn.c) provides a set of functions for evaluating expres-
sions. In addition, functions for defining functions and accessing the argument values
of expressions are provided.

In versions of CLIPS previous to version 5.0, garbage collection was simplified by
that fact that it could be performed on rule firing boundaries. Symbols and other data
structures created by the evaluation of expressions could be checked at the end of
each rule firing to determine if they could be garbage collected. Version 5.0 of CLIPS,
however, introduced object-oriented and procedural programming paradigms. It is
now possible to have a CLIPS program which contains no rules at all. Thus, it is no
longer sufficient to perform garbage collection only on rule boundaries. Garbage
collection of symbols and other ephemeral data structures can now occur at the
completion of each rule, deffunction, generic function, or message-handler that is
executed.

Because rule firings, function calls, and message passing can be nested many
levels deep, it is necessary to associate an “evaluation depth” with each ephemeral
data structure that is created. This evaluation depth indicates the levels of unnesting
that must occur before a particular data structure can be garbage collected. For
example, if function foo calls function bar which in turn calls function yak, then data
structures created through the evaluation of expressions in function foo would have an
evaluation depth of 1. Similarly, expression evaluation results in function bar would
have an evaluation depth of 2 and results from function yak would have an evaluation
depth of 3. Ephemeral data structures created at a depth of 3 could be garbage
collected upon return to either function foo or bar. Similarly, data structures created at
a depth of 2 could be garbage collected upon return to function foo and the data
structures created by foo could be garbage collected once foo was exited.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

| BindList |

PURPOSE: A linked list of the local variables that are dynamically
allocated by the bind command for a given evaluation
depth. Any routine which increments the
CurrentEvaluationDepth value must store the old value
of the BindList and restore this value when the
CurrentEvaluationDepth is decremented.

| CurrentEvaluationDepth |

PURPOSE: The current “depth” of evaluation. This value is used for the
purposes of garbage collection. At the beginning of the
execution of each rule, deffunction, generic function, or
message-handler, this value is incremented by one. At the

CLIPS Architecture Manual 57

completion of the execution of each rule, deffunction, generic
function, or message-handler, this value is decremented by
one. Note that the execution of a system or user-defined
function does not affect this value.

| EvaluationError |

PURPOSE: Boolean flag which indicates if an error has occurred while
evaluating an expression.

| HaltExecution |

PURPOSE: Boolean flag which indicates if execution (rules, certain
functions such as while, deffunctions, etc.) should be halted.

| CurrentExpression |

PURPOSE: As expressions are evaluated, maintains list of arguments for
each expression evaluation.

GLOBAL FUNCTIONS

| Argument Access Functions |

PURPOSE: A series of functions which allows access to the arguments
of an expression. Some access functions are implemented
as macros. The following are access functions implemented
as functions: RtnArgCount, ArgCountCheck,
ArgTypeCheck, RtnLong, RtnUnknown, RtnLexeme,
RtnDouble, and ArgRangeCheck. See the Advanced
Programming Guide for further details.

| CLIPSFunctionCall |

PURPOSE: Allows functions external to CLIPS to execute function calls.
See the Advanced Programming Guide for further details.

| DefineFunction |

PURPOSE: Defines a function to be accessible to CLIPS.

ARGUMENTS: Function access name, pointer to the function, type of return
value, and actual function name.

| EvaluateExpression |

PURPOSE: Evaluates an expression.

58 Evaluation Module

ARGUMENTS: An expression to evaluate, and a pointer to a data structure
in which to return a value.

RETURNS: The current value of EvaluationError. The return value of
the expression is stored in the data structure.

GetBoundVariable |

PURPOSE: Searches the BindList for a specified variable.

ARGUMENTS: The name of the variable and a pointer to a DATA_OBJECT
structure in which to store variable, if found.

RETURNS: A boolean value. TRUE if the variable was found, otherwise
FALSE.

GetEvaluationError |

PURPOSE: Returns the EvaluationError flag.

GetHaltExecution |

PURPOSE: Returns the HaltExecution flag.

PrintDataObject |

PURPOSE: Prints a DATA_OBJECT structure to the specified logical
name.
ARGUMENTS: A pointer to a DATA_OBJECT structure and a logical name.

PropagateReturnValue |

PURPOSE: Decrements the associated depth for a value stored in a
DATA_OBJECT structure. In effect, the values returned by
certain evaluations (such as a deffunction call) are passed
up to the previous depth of evaluation. The return value's
depth is decremented so that it will not be garbage collected
along with other items that are no longer needed from the
evaluation that generated the return value.

ARGUMENTS: A pointer to a DATA_OBJECT structure.

ReturnValues |

PURPOSE: Returns a linked list of DATA_OBJECT structures to the pool
of free memory.

ARGUMENTS: A pointer to the head DATA _OBJECT structure in a list.

CLIPS Architecture Manual 59

Return Value Access Functions |

PURPOSE: A series of functions which allows access to the return value
data structures. Most of these access functions are
implemented as macros. See the Advanced Programming
Guide for further details.

SetEvaluationError |

PURPOSE: Sets the EvaluationError flag.

ARGUMENTS: A boolean value (the new value of the flag). If the value of
the flag is TRUE, then the HaltExecution flag is also set to
TRUE.

SetHaltExecution |

PURPOSE: Sets the HaltExecution flag.
ARGUMENTS: A boolean value (the new value of the flag).

SetMultifieldErrorValue |

PURPOSE: Creates a multifield value of length zero for error returns.

ARGUMENTS: A pointer to a DATA_OBJECT structure in which the error
value is to be stored.

ValueDeinstall |

PURPOSE: Decrements the appropriate count (in use) values for a
DATA_OBJECT structure.
ARGUMENTS: A pointer to a DATA_OBJECT structure.
Valuelnstall |
PURPOSE: Increments the appropriate count (in use) values for a

DATA OBJECT structure.
ARGUMENTS: A pointer to a DATA_OBJECT structure.

INTERNAL FUNCTIONS

NonexistantError |

PURPOSE: Prints the error message for a nonexistant argument.

60 Evaluation Module

ARGUMENTS: The name of the access function which couldn’t find the
argument, the name of the function which called the access
function, and the index position of the argument requested.

WrongTypeError |
PURPOSE: Prints the error message for the wrong type of argument.
ARGUMENTS: The name of the access function which couldn’t find the

CLIPS Architecture Manual

argument, the name of the function which called the access
function, and the name of the type expected.

61

Command Line Module

The Command Line Module (commline.c) contains the basic functions for setting up a
simple command line processor for CLIPS commands.

Command line routines are oriented for building interfaces that use an event-driven
philosophy. These interfaces have windows, menus, and/or command entry windows.
In an event-driven interface, keyboard input is just one of several possible events. If a
key is pressed, it is placed in an input buffer. The input buffer will not be processed
until a complete command has been entered. In CLIPS, commands are delimited by a
set of matching parentheses. In addition, commands may also be variables or
constants. During entry to the input buffer, other events such as menu selections can
also be processed because CLIPS has not yet begun to process the input command.

The basic input buffer to CLIPS should be used for accepting keyboard entry. File
entry should be permitted to lock out other events. In effect, menu commands cannot
be accessed during the loading of a file. The file loading operation represents a com-
plete event by itself whereas a single keyboard character entry is a single event.

The basic command loop for CLIPS works as follows:

procedur e ComandLoop
print the CLIPS pronpt
do forever
cal | Event Function
if a conplete command is in the input buffer then
performthe command
clear the input buffer
print the CLIPS pronpt
end if
end do
end procedure

Notice that the loop calls the EventFunction procedure repeatedly. The com-
mand is executed only when the CompleteCommand function indicates that a
complete command is waiting in the input buffer. A typical EventFunction procedure
for a non-windowed interface would be

procedur e Generi cEvent Function

get a character fromthe keyboard

stuff the character into the input buffer
end procedure

The only event possible is to grab a character which is then stuffed into an input
buffer. If a command has been completed, the CompleteCommand function returns a
non-zero value. Simple modifications to this basic function allow for the easy operation
of a windowed interface as shown following.

CLIPS Architecture Manual 63

procedur e WndowEvent Functi on
get the next event
i f the event is a key press then
stuff the character into the input buffer
else if the event is a nenu sel ection
execute the menu sel ection
else if the event is a wi ndow operation
execut e the w ndow operation
end if
end procedure

In this function, a routine is used to get the next event. Depending upon the exact
nature of the event, different actions are taken. This type of setup will allow the user to
begin entering a command, browse the data base using menu options, and then finish
entering the command.

GLOBAL VARIABLES

| EvaluatingTopLevelCommand |

PURPOSE: Boolean flag which indicates whether a top-level command
is currently being executed.

INTERNAL VARIABLES

| CommandsString |

PURPOSE: Input buffer for the command string being formed.

| EventFunction |

PURPOSE: A pointer to the function to be called to process the next
event.

| MaximumCharacters |

PURPOSE: Current maximum length of the CommandString.

| MemoryStatusFunction |

PURPOSE: A pointer to a function which is periodically called during the
command loop to allow the interface to update a display
which indicates the amount of memory used by CLIPS.

| ParsingTopLevelCommand |

PURPOSE: Boolean flag which indicates whether a top-level command
is currently being parsed.

64 Command Line Module

VersionString |

PURPOSE: The character string that is printed when CLIPS first starts
indicating the CLIPS version number and date of creation.

GLOBAL FUNCTIONS

AppendCommandString |

PURPOSE: Appends a value to the contents of the CommandString.
ARGUMENTS: A string.

CommandLoop |
PURPOSE: Endless loop which waits for user commands and then

executes them. The command loop will bypass the
EventFunction if there is an active batch file.

CompleteCommand |

PURPOSE: Determines whether a string forms a complete command. A
complete command is either a constant, a variable, or a
function call which is followed (at some pointer) by a
carriage return. Once a complete command is found (not
including the parenthesis), extraneous parenthesis and
other tokens are ignored.

ARGUMENTS: A string.

RETURNS: Integer value. 1 if the string forms a complete command
without errors, 0 if the string forms an incomplete command
without errors, and -1 if the string has errors (e.qg., the
command begins with a right parenthesis).

OTHER NOTES: Implemented as several functions.

ExpandCommandString |

PURPOSE: Appends a character to the CommandString.

ARGUMENTS: Character to be appended. This routine properly handles the
backspace character by removing a character from the
CommandString.

FlushCommandString |

PURPOSE: Empties the contents of the CommandString.

CLIPS Architecture Manual 65

GetCommandString |

PURPOSE: Returns a pointer to the contents of the CommandString.

RETURNS: Current CommandString.

PrintPrompt |

PURPOSE: Prints the CLIPS command prompt.
RouteCommand |
PURPOSE: Processes a completed command.
ARGUMENTS: A command string.
RETURNS: Boolean value. TRUE if the command was successfully

executed, otherwise FALSE.

OTHER NOTES: Creates a string router with its command string argument
and then calls the appropriate parsing and execution
functions to process the command.

SetCommandString |

PURPOSE: Sets the contents of the CommandString to a specific
value.

ARGUMENTS: A string.

OTHER NOTES: Flushes current contents of the CommandString.

SetEventFunction |

PURPOSE: Replaces the current value of EventFunction.
ARGUMENTS: A pointer to the new event-handling function.
RETURNS: A pointer to the old event-handling function.

SetMemoryStatusFunction |

PURPOSE: Replaces the current value of MemoryStatusFunction.

ARGUMENTS: A pointer to the new memory status function.

TopLevelCommand |

PURPOSE: Indicates whether a top-level command is being parsed.

66 Command Line Module

RETURNS:

Returns the value of ParsingTopLevelCommand.

INTERNAL FUNCTIONS

DefaultGetNextEvent |

PURPOSE:

Default event-handling function. Handles only keyboard
events by first calling GetcCLIPS to get a character and
then calling ExpandCommandString to add the character
to the CommandString.

DoComment |

PURPOSE:

ARGUMENTS:

RETURNS:

Skips over a comment contained within a string until a line
feed or carriage return is encountered.

A pointer to a string and an integer representing the position
of the character in the string currently being scanned.

An integer. The character position in the string where the
comment terminates.

DoString

PURPOSE:

ARGUMENTS:

RETURNS:

Skips over a string contained within a string until the closing
guotation mark is encountered.

A pointer to a string, an integer representing the position of
the character in the string currently being scanned, and a
pointer to an integer flag which indicates if the closing
guotation mark was actually encountered.

An integer. The character position in the string where the
string terminates. If the string is terminated by a quotation
mark then the integer flag passed as an argument is set to
TRUE, otherwise the flag is set to FALSE.

DoWhiteSpace |

PURPOSE:

ARGUMENTS:

RETURNS:

CLIPS Architecture Manual

Skips over white space consisting of spaces, tabs, and form
feeds that is contained within a string.

A pointer to a string and an integer representing the position
of the character in the string currently being scanned.

An integer. The character position in the string where the
white space terminates.

67

Construct Manager Module

Several defining constructs appear in CLIPS: defrule, deffacts, deftemplate,
defglobal, deffunction, defclass, definstances, defmessage-handler,
defgeneric, and defmethod. The Construct Manager Module (constrct.c) handles a
variety of operations generic to these constructs.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

BeforeClearFunction |

PURPOSE: Contains a pointer to a function which is to be called before
the clear command is executed (if this variables is not
NULL). If the function returns FALSE, the clear command is
not performed.

BeforeResetFunction |

PURPOSE: Contains a pointer to a function which is to be called before
the reset command is executed (if this variables is not
NULL). If the function returns FALSE, the reset command is
not performed.

Executing |

PURPOSE: Boolean flag. If TRUE, indicates that a construct is being
executed.

ListOfClearFunctions |

PURPOSE: Contains a list of functions to be called whenever a clear
command is issued.

ListOfConstructs |

PURPOSE: Contains the list of constructs recognized by CLIPS along
with pointers to the functions which parse each construct.

ListOfResetFunctions |

PURPOSE: Contains a list of functions to be called when a reset is per-
formed.

CLIPS Architecture Manual 69

ListOfSaveFunctions |

PURPOSE:

Contains list of functions to be called whenever a save
command is issued.

PrintWhileLoading |

PURPOSE:

Boolean flag. If on, then loading information will be printed
during the loading of constructs. If off, then no loading
information is printed. The top-level load command enables
this flag (and either single characters or a more lengthy
message will be printed for each construct depending upon
the value of WatchCompilations). The embedded
LoadConstructs function does not set this flag and thus by
default messages will not be printed when this routine is
called.

WatchCompilations |

PURPOSE:

GLOBAL FUNCTIONS

Boolean flag. If on, indicates that the progress of construct
definitions should be displayed.

AddClearFunction |

PURPOSE: Adds a function to the ListOfClearFunctions.
ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the clear item.
AddConstruct |
PURPOSE: Adds a construct and its associated parsing function to the
ListOfConstructs.
ARGUMENTS: Name of construct for which the parsing function is to be

applied, and a pointer to the parsing function.

AddResetFunction |

PURPOSE:
ARGUMENTS:

70

Adds a function to ListOfResetFunctions.

A name to be associated with the function, a pointer to the
function, and the priority of the reset item.

Construct Manager Module

AddSaveFunction |

PURPOSE: Adds a function to the ListOfSaveFunctions.

ARGUMENTS: A name to be associated with the function and a pointer to
the function.

CallClearFunctions |

PURPOSE: Calls all clear functions in the ListOfClearFunctions.

ClearCLIPS |

PURPOSE: Clears the CLIPS environment. See the Basic Programming
Guide for details on the effects of a clear.

OTHER NOTES: Calls the BeforeClearFunction, then each function in the
ListOfClearFunctions in order of descending priority.

ExecutingConstruct |

PURPOSE: Returns the value of Executing.

GetCompilationsWatch |

PURPOSE: Returns the value of WatchCompilations.

GetPrintWhileLoading |

PURPOSE: Returns the value of PrintWhileLoading.

InitializeConstructs |

PURPOSE: Initializes the Construct Manager.

InitializelgnoredConstructs |

PURPOSE: Initializes some parsing routines for skipping over CRSV
constructs not handled by CLIPS such as defrelation and
defexternal.

| LoadConstructs |

PURPOSE: Loads a set of constructs into the current CLIPS environment
from a file.

ARGUMENTS: A file name.

CLIPS Architecture Manual 71

OTHER NOTES: Converts file name to a logical name and calls function
LoadConstructsFromLogicalName.

LoadConstructsFromLogicalName |

PURPOSE: Loads a set of constructs into the current CLIPS environment
from a specified logical name.

ARGUMENTS: A logical name.

OTHER NOTES: Calls function ParseConstruct to read in each construct.

ParselgnoredConstruct |

PURPOSE: Parsing routine for skipping over constructs recognized, but
not handled by CLIPS (such as CRSV constructs).
ARGUMENTS: Logical name from which input is read.
ParseConstruct |
PURPOSE: Parses a construct.
ARGUMENTS: Name of construct to be parsed, and a logical name from

which input is to be read.

RETURNS: An integer. -1 if the construct name has no parsing function,
0 if the construct was parsed successfully, and 1 if the con-
struct was parsed unsuccessfully.

OTHER NOTES: Construct parsing functions should return a value of 0 if the
construct is parsed successfully and a value of 1 if the con-
struct is not parsed successfully.

RemoveClearFunction |

PURPOSE: Removes a function from the ListOfClearFunctions.
ARGUMENTS: Name associated with the function.

RemoveConstruct |
PURPOSE: Removes a construct and its associated parsing function

from the ListOfConstructs.

ARGUMENTS: Name of construct to be removed.

72 Construct Manager Module

RemoveResetFunction |

PURPOSE: Removes a function from the ListOfResetFunctions.

ARGUMENTS: Name associated with reset function.

RemoveSaveFunction |

PURPOSE: Removes a function from the ListOfSaveFunctions.
ARGUMENTS: Name associated with function.

ResetCLIPS |
PURPOSE: Resets the CLIPS environment. See the Basic Programming

Guide for details on the effects of a reset.

OTHER NOTES: Calls the BeforeResetFunction, then each function in the
ListOfResetFunctions in order of descending priority.

SaveConstructs |
PURPOSE: Saves the constructs currently in the CLIPS environment to a
file. This function is the primary routine called by the save
command.
ARGUMENTS: The name of the file to which constructs should be saved.
OTHER NOTES: Opens the specified file then calls each function in the

ListOfSaveFunctions.

SetBeforeClearFunction |

PURPOSE: Sets the value of BeforeClearFunction.

ARGUMENTS: A pointer to a function.

SetBeforeResetFunction |

PURPOSE: Sets the value of BeforeResetFunction.

ARGUMENTS: A pointer to a function.

SetCompilationsWatch |

PURPOSE: Sets the value of WatchCompilations.
ARGUMENTS: A boolean value (TRUE or FALSE).

CLIPS Architecture Manual 73

SetExecutingConstruct |

PURPOSE: Sets the value of Executing.
ARGUMENTS: A boolean value (TRUE or FALSE).

SetPrintWhileLoading |

PURPOSE: Sets the value of PrintWhileLoading.
ARGUMENTS: A boolean value (TRUE or FALSE).

ValidConstruct |

PURPOSE: Determines whether a construct is in the ListOfConstructs.
ARGUMENTS: Name of the construct.
RETURNS: Boolean value. TRUE if the construct has a parsing function;

otherwise FALSE.

INTERNAL FUNCTIONS

ErrorAlignment |

PURPOSE: Positions the parser at a token which indicates the beginning
of a valid construct. If called as the result of an error in a
construct, this routine skips over tokens until it finds the
beginning of a new construct. If an error hasn't occurred,
then this routine checks to see that the parser is currently at
the beginning of a new construct (a left parenthesis followed
by a constructs name).

ARGUMENTS: Logical name from which input was being read when an
error was detected, a boolean value indicating whether an
error has occurred, and a pointer to a data structure in which
parsed tokens can be stored.

74 Construct Manager Module

Utility Module

The Utility Module (utility.c) contains a number of generally useful functions including
functions for printing primitive data types, constructing string representations of
primitive data types, appending characters and strings to other strings, checking
argument types, printing generic error and informational messages, adding and
manipulating items that can be watched using the watch command, and performing
periodic garbage collection.

The method CLIPS uses to perform periodic garbage collection merits some
discussion. Garbage collection and ephemeral “items” have already been discussed
to some extent as they relate to the Symbol Module (symbol.c) and the Evaluation
Module (evaluatn.c). Garbage within CLIPS comes in several varieties. The first variety
is garbage that can be immediately discarded when it is no longer in use. As an
example of this, consider the following command sequence.

CLIPS> (open "tenp.txt" tenp "wW')

TRUE

CLIPS> (printout tenp "Hello Wirld" crlf)
CLI PS> (cl ose tenp)

TRUE

CLI PS>

When the file "temp.txt" is opened using the open command, data structures are
allocated which associate the logical name temp with the newly opened file. When the
close command is used to close the file, the data structure previously allocated are no
longer needed and can be immediately returned to the pool of free memory. In this
case, garbage collection occurs for the data structures at the same time the garbage is
created. Deleting constructs is another example of this type of garbage collection since
the memory used by these constructs is almost always immediately returned to the
pool of free memory (with some exceptions such as deleting an executing rule).

The second type of garbage collection occurs when an item appears to be garbage
(but it cannot yet be determined), or an item is garbage but is temporarily being
referred to by another data structure. As an example of this, consider the following
command sequence.

CLI PS> (assert (colors red green))
CLI PS>
(defrul e renove-fact
?f <- (colors ?x ?y)
=>
(retract ?f)
(printout t "Colors: " ?2x " " ?y crlf))
CLI PS> (run)
CLI PS>

When the fact (color red green) is retracted by the remove-fact rule, the symbols red

and green become garbage since they are no longer permanently referred to by any
data structure. However, these values are still needed for the printout command which

CLIPS Architecture Manual 75

follows the retract command so the values cannot be garbage collected just yet. Once
the rule has completed execution the values can be safely garbage collected.

Garbage collection can occur at the completion of each rule, deffunction, generic
function, or message-handler that is executed, however, it does not always occur each
time one of these boundaries is encountered. CLIPS uses some heuristics to
determine if garbage collection should actually take place. First, either the size of
number of items subject to garbage collection must exceed a specified value. That is,
CLIPS will not garbage collect to reclaim 120 bytes of memory. Second, if garbage
collection does not free enough memory at a specified evaluation depth, then garbage
collection at that depth will not be repeated until a larger amount of garbage has been
created. This prevents garbage collection from being repeatedly attempted on items
that cannot yet be freed.

GLOBAL VARIABLES

| AddressesToStrings |

PURPOSE: Boolean flag which indicates whether addresses (external,
fact, or instance) should be printed using the notation for
addresses or should be printed with quotes surrounding
them. This is used by functions such as save-facts which
are not capable of reloading addresses and so must convert
the addresses to a safe form.

| CurrentEphemeralCountMax |

PURPOSE: The current maximum number of ephemeral items allowed
before periodic garbage collection is attempted.

| CurrentEphemeralSizeMax |

PURPOSE: The current maximum amount of memory used by
ephemeral items before periodic garbage collection is
attempted.

| EphemeralltemCount |

PURPOSE: The current number of “items” that can be potentially
garbage collected.

| EphemeralltemSize |

PURPOSE: The amount of memory used by all of the “items” the can be
potentially garbage collected.

76 Utility Module

| PreserveEscapedCharacters |

PURPOSE: Boolean flag which indicates whether the backslash escape
character should be reembedded within a string when the
string is printed.

INTERNAL VARIABLES

| ListOfCleanupFunctions |

PURPOSE: Contains a list of functions to be called when a periodic
cleanup is performed.

| ListOfPeriodicFunctions |

PURPOSE: Contains a list of functions to be called when a periodic
cleanup is checked. These function are always called
whenever PeriodicCleanup is called. The
ListOfCleanupFunction is only called if the cleanup
heuristics indicate that a periodic cleanup should be
performed. These functions are useful for updating displays
or checking for events in machine specific interfaces layered
on top of the CLIPS kernel.

| ListOfWatchltems |

PURPOSE: Contains a list of structures that represent the items that can
be watched using the watch command.

GLOBAL FUNCTIONS

| AddCleanupFunction |

PURPOSE: Adds a function to the ListOfCleanupFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the cleanup item.

| AddPeriodicFunction |

PURPOSE: Adds a function to the ListOfPeriodicFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the periodic item.

CLIPS Architecture Manual 77

AddWatchltem |

PURPOSE:
ARGUMENTS:

Adds a watch item to the ListOfWatchltems.

The name of the watch item, a pointer to the integer in which
the watch item's value is stored, and the priority of the watch
item.

AppendNToString |

PURPOSE:

ARGUMENTS:

RETURNS:

Appends a specified number of characters from one string to
another. Expands the appended string, if necessary, to
create enough space.

A pointer to the appending string, a pointer to the string to be
appended, a pointer to the current length of the appended
string, a pointer to the maximum length that the appended
string can contain, and the maximum number of characters
that are to be appended to the string.

The new appended string. The string that is appended may
be dynamically reallocated to create a larger string. The
current length and maximum length values are updated by
this routine.

AppendToString |

PURPOSE:

ARGUMENTS:

RETURNS:

Appends one string to another. Expands the appended
string, if necessary, to create enough space.

A pointer to the appending string, a pointer to the string to be
appended, a pointer to the current length of the appended
string, and a pointer to the maximum length that the
appended string can contain.

The new appended string. The string that is appended may
be dynamically reallocated to create a larger string. The
current length and maximum length values are updated by
this routine.

AtomDeinstall |

PURPOSE:

ARGUMENTS:

78

Decrements the count value for a single primitive data type.

The type of the primitive data type and the value of the
primitive data type.

Utility Module

AtomiInstall |

PURPOSE: Increments the count value for a single primitive data type.
ARGUMENTS: The type of the primitive data type and the value of the
primitive data type.
GetConstructName |
PURPOSE: Checks for an appropriate symbolic name as the argument

to a function call during run-time. Used by functions such as
ppdefrule and undefrule which require a symbolic value
as the name of a defrule. A name must be a symbol, not a
string.

ARGUMENTS: Expected number of arguments, name of function being
executed, position in the argument where the name should
occur, and a string describing the name type being sought
(i.e., "defrule name", "deffacts name").

RETURNS: Returns the symbolic value (a string) found in the position. If
an error occurs, returns NULL.

CLIPSSystemError |

PURPOSE: Standard error message used to indicate that a CLIPS
internal error has been detected.

ARGUMENTS: A string indicating the module in which the error was
detected and an ID number associated with error.

ExpandStringWithChar |

PURPOSE: Adds a character to a string, expanding the string if
necessary.
ARGUMENTS: Character to be added, destination string, a pointer to the

integer representing the insertion point in the string, a
pointer to the integer representing the maximum size of the
string, and new size for the string if it must be expanded.

RETURNS: A string with the character added to it. The string that is
returned may have been dynamically reallocated to create a
larger string. The current length and maximum length values
are updated by this routine.

CLIPS Architecture Manual 79

ExpectedTypeError |

PURPOSE: Standard error message used when wrong type of argument
has been used in an expression.

ARGUMENTS: Name of function, position of argument, and string containing
a description of the expected type.

| ExpectedCountError |

PURPOSE: Standard error message used when the wrong number of
arguments has been used in the argument list of a function
call.

ARGUMENTS: Name of function, relation value for arguments being

checked (EXACTLY, AT LEAST, NO MORE THAN), and
comparison value for arguments being checked.

FloatToString |

PURPOSE:

ARGUMENTS:
RETURNS:
OTHER NOTES:

Converts a float to a string using the CLIPS numeric format.
CLIPS uses the %g format option from the C library routine
sprintf to print floating point numbers. This format selects
either scientific notation or prints all the digits of the number
(whichever ends up taking less space). In addition, CLIPS
makes sure that all floats are printed with at least one digit
following the decimal point.

A floating-point number.
A string.
Return value is stored in a static data area. Subsequent calls

to this function will write over this data area. If the return
value must be stored, it should be duplicated.

GetFileName |

PURPOSE:

ARGUMENTS:

RETURNS:

80

Checks for an appropriate file name as the argument of a
function call during run-time. A file name must be a string or
a symbol.

Name of function being executed and the position of the
argument in the argument list that contains the file name.

File name.

Utility Module

GetLogicalName |

PURPOSE: Checks for an appropriate logical name in an expression
during run-time.

ARGUMENTS: The position of the argument in the argument list that
contains the logical name and the logical name to be used if
the default logical name, t, is found.

RETURNS: A string representing the logical name. If found, the value
designated as the default logical name is returned. Returns
NULL if the argument is unacceptable as a logical name.

GetNthWatchName |
PURPOSE: Given an index, returns the name of the nth item in the
ListOfWatchltems (which is useful for constructing a
menu).
ARGUMENTS: An integer index.
RETURNS: The name of the nth watch item (a character string).

GetNthWatchValue |

PURPOSE: Given an index, returns the value of the nth item in the
ListOfWatchltems.

ARGUMENTS: An integer index.

RETURNS: The boolean value of the nth watch item.

GetWatchltem |

PURPOSE: Returns the value of a watch item.

ARGUMENTS: The name of the watch item.

LonglntegerToString |

PURPOSE: Converts a long integer to a string.

ARGUMENTS: A long integer.

RETURNS: A string.

OTHER NOTES: Return value is stored in a static data area. Subsequent calls

to this function will write over this data area. If return value
must be stored, it should be duplicated.

CLIPS Architecture Manual 81

OpenErrorMessage |

PURPOSE:

ARGUMENTS:

Standard error message used when a function cannot open
a file.

The name of the function and the file name that could not be
opened.

PeriodicCleanup |

Returns ephemeral garbage to the pool of free memory.
When this function is called and it is determined that there is
sufficient garbage to warrant a cleanup, then each of the
functions in the ListOfCleanupFunctions will be called to
perform garbage collection.

Two boolean values. The first value indicates whether all
evaluation depths should cleaned up. Normally, garbage
collection only occurs for items that have an evaluation
depth greater than the current evaluation depth. If this
boolean argument is TRUE, however, the current evaluation
depth will be temporarily set to a value which forces garbage
collection for all depths. The second boolean value is used
to determine whether heuristics are used in performing the

Prints a CLIPS primitive data type (which does not include

Logical name to which output is sent, the type of the primitive
data type, and the value of the primitive data type.

Prints a number to a logical name using the CLIPS print

PURPOSE:
ARGUMENTS:
garbage collection.
PrintAtom |
PURPOSE:
multifield values).
ARGUMENTS:
PrintFloat |
PURPOSE:
format for numbers.
ARGUMENTS:

A floating-point number and a logical name.

PrintInChunks |

PURPOSE:

ARGUMENTS:

82

Prints a string in chunks to accommodate systems which
have a limit on the maximum size of a string which can be
printed.

String to be printed and logical name to which the string is to
be printed.

Utility Module

PrintLonglInteger |

PURPOSE: Prints a long integer to a logical name using CLIPS print
format for numbers.

ARGUMENTS: A long integer and a logical name.

PrintTally |

PURPOSE: Standard message for functions which print a message
indicating the number of items displayed (e.g. the facts
command).

ARGUMENTS: The logical name to which output is to be sent, the number of

items tallied, and singular and plural strings for the items
tallied (e.g. "fact" and "facts").

OTHER NOTES: No message is printed if the number of items tallied is zero.

RemoveCleanupFunction |

PURPOSE: Removes a function from the ListOfCleanupFunctions.

ARGUMENTS: Name associated with the cleanup item.

RemovePeriodicFunction |

PURPOSE: Removes a function from the ListOfPeriodicFunctions.

ARGUMENTS: Name associated with the periodic item.

RestoreAllWatchltems |

PURPOSE: Restores the old value of each watch items that was saved
when the SaveAllWatchltems function was called.

SetAllWatchltems |

PURPOSE: Sets all of the watch items to a particular value and
remembers the old value of each watch item.

ARGUMENTS: The new boolean value to which all watch items are set.

SetWatchltem |

PURPOSE: Sets the value of a watch item.

CLIPS Architecture Manual 83

ARGUMENTS: The name of the watch item and the new boolean value. The
string “all” may be used to set all watch items to a particular
value.

| SyntaxErrorMessage |
PURPOSE: Standard error message used for syntax errors.
ARGUMENTS: The type of syntax error that occurred (e.g. “defrule”,

“conditional elements”, etc.).

INTERNAL FUNCTIONS

| AddCPFunction |

PURPOSE:

ARGUMENTS:

Driver routine for implementing the functions
AddCleanupFunction and AddPeriodicFunction.

A name to be associated with the function, a pointer to the
function, the priority of the item, and a pointer to a pointer to
the list to which the function is to be added.

| RemoveCPFunction |

PURPOSE:

ARGUMENTS:

Driver routine for implementing the functions
RemoveCleanupFunction and
RemovePeriodicFunction.

Name associated with the periodic item and a pointer to a
pointer to the list from which the function is to be removed.

Utility Module

Fact Manager Module

The Fact Manager Module (factmngr.c) provides the necessary functionality to
maintain, update, and browse facts. It also provides top-level implementation of the
assert and retract commands. Functions for displaying and browsing facts are likewise
provided. The other major functionality provided by this module is a hash table con-
taining facts. Unlike OPS5, the CLIPS inferencing paradigm does not allow two
occurrences of the same fact to be in the fact-list. A fact hash table provides a
convenient method for determining if a fact is already in the fact-list.

GLOBAL VARIABLES

| ChangeToFactList |

PURPOSE: Boolean flag. If TRUE, indicates that the FactList has been
altered. Updates to TRUE whenever a fact is asserted or
retracted.

INTERNAL VARIABLES

| AssertRetractInProgress |

PURPOSE: Boolean flag. If TRUE, an assertion or retraction of a fact is
currently occurring.

| FactDuplication |

PURPOSE: Boolean flag. If TRUE, duplications of facts are allowed in the
FactList.

| FactHashTable |

PURPOSE: Stores all facts used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
fact table entries. Collisions are resolved by adding the fact
entry to the list of entries.

OTHER NOTES: Information about facts is also stored in the FactList. Used
primarily to quickly determine if a fact is already in the
FactList.
| FactList |
PURPOSE: Stores all facts used by CLIPS.

C IMPLEMENTATION: Implemented as a list.

CLIPS Architecture Manual 85

| GarbageFacts |

PURPOSE: Points to the list of facts that can be returned to free memory.
These facts have typically been retracted but need to remain
in memory because there are outstanding references to
them (e.g. they are needed for the duration of a rule firing in
case a variable access within the fact is made or other facts
might refer to them).

| LastFact |

PURPOSE: Points to the last fact in the FactList.

| ListOfSegments |

PURPOSE: Contains the list of multifield values that have been
dynamically created.

| NextFactIndex |

PURPOSE: Long Integer value to be used as the fact-index for the next
asserted fact.

| NumberOfFacts |

PURPOSE: Contains an integer count of the number of facts in the
FactList.

| WatchFacts |

PURPOSE: Boolean flag. If TRUE, indicates that fact assertions and
retractions should be displayed.

GLOBAL FUNCTIONS

| AddFact |
PURPOSE: Coordinates assertion of a fact into the FactList.
ARGUMENTS: A fact.

| AddHashedFact |
PURPOSE: Adds a fact to the FactHashTable.
ARGUMENTS: A fact and the hash value of that fact.

86 Fact Manager Module

OTHER NOTES: Does not check to determine if the fact is already in the
FactHashTable.

AddToSegmentList |

PURPOSE: Adds a fact to the ListOfSegments. Can be used in
conjunction with the CreateFact function to perform the
same functionality as CreateMultifield.

ARGUMENTS: A pointer to a fact.

AssertString |

PURPOSE: Converts a string to a fact and then asserts it. Uses the
functions StringToFact and AddFact.

ARGUMENTS: A string.

RETURNS: A pointer to the the newly asserted fact.

CreateFact |

PURPOSE: Allocates the data structures necessary for a fact containing
a specified number of fields.

ARGUMENTS: Number of fields in the fact.

RETURNS: A fact of the appropriate size.

CreateMultifield |

PURPOSE: Allocates the data structures necessary for a multifield
containing the specified number of fields and adds the newly
created multifield to the ListOfSegments.

ARGUMENTS: Number of fields in the multifield.
RETURNS: A multifield of the appropriate size. Note that the structures
used for the multifields are identical to the fact structures.
DecrementFactCount |
PURPOSE: Decrements the count value for a fact.
ARGUMENTS: A pointer to a fact.

CLIPS Architecture Manual 87

DuplicateSegment |

PURPOSE: Copies the contents of a multifield value to another multifield
value.

ARGUMENTS: A pointer to the source multifield and a pointer to the
destination multifield.

| FactCompare |

PURPOSE: Determines if two facts are identical.

ARGUMENTS: Two facts.

RETURNS: Boolean value. True if facts are identical; otherwise false.

FactDeinstall |

PURPOSE: Called when a fact is garbage collected (not when it is
retracted). Decrements the NumberOfFacts and calls
SegmentDeinstall.

ARGUMENTS: A fact.
| FactExists |
PURPOSE: Determines if a fact exists in the FactHashTable.
ARGUMENTS: A fact and the hash value of that fact.
RETURNS: A pointer to the fact in the FactHashTable if it already
exists, otherwise NULL.
| Factinstall |
PURPOSE: Called when a fact is newly created. Increments the
NumberOfFacts and calls Segmentinstall.
ARGUMENTS: A fact.

FindIndexedFact |

PURPOSE: Finds a fact by fact-index.
ARGUMENTS: The fact-index of the fact being sought.
RETURNS: A pointer to the fact with the specified fact-index or NULL if a

fact with the specified fact-index does not exist.

88 Fact Manager Module

FlushSegments |

PURPOSE: Removes any multifield values from the ListOfSegments
that have a zero count and an evaluation depth greater than
the current evaluation depth.

ARGUMENTS: A fact.

GetFactDuplication |

PURPOSE: Returns the current value of the FactDuplication flag.

RETURNS: A boolean value.

GetFactindex |

PURPOSE: Returns fact-index associated with a fact.
ARGUMENTS: A pointer to a fact.
RETURNS: The fact-index of the fact (an integer value).

GetFactListChanged |

PURPOSE: Returns the value of ChangeToFactList.
GetFactPPForm |

PURPOSE: Returns the pretty print representation of a fact.

ARGUMENTS: A pointer to a fact, a pointer to a buffer in which to store the

pretty print representation, and the size of the buffer.

RETURNS: No return value. The buffer passed as an argument is used
to store the pretty print representation.

GetNextFact |
PURPOSE: Returns a pointer to the “next” fact in the FactList.
ARGUMENTS: A pointer to a fact in the FactList.
RETURNS: Next fact after the fact passed as an argument. If a NULL
pointer is used, the first fact in the FactList is returned.
GetNumberOfFacts |
PURPOSE: Returns the value of the NumberOfFacts.

CLIPS Architecture Manual 89

RETURNS: An integer value.

HashFact |
PURPOSE: Computes a hash value for a fact.
ARGUMENTS: A fact.
RETURNS: An integer hash value less than the array size of the
FactHashTable.
IncrementFactCount |
PURPOSE: Increments the count value for a fact.
ARGUMENTS: A pointer to a fact.

InitializeFacts |

PURPOSE: Performs all necessary initialization for facts (initializing the
FactHashTable, adding reset and clear functions, adding
the facts watch item, and calling DefineFunction to add
fact related commands).

ListFacts |

PURPOSE: Displays all of the fact in the FactList to the logical name
wdisplay.

PrintFact |

PURPOSE: Displays the fields of a fact enclosed within parentheses.

ARGUMENTS: A fact and logical name to which output is to be sent.

PrintFactWithldentifier |

PURPOSE: Displays the fact-index of a fact followed by the fact. Uses the
function PrintFact.

ARGUMENTS: A fact and logical name to which output is to be sent.

RemoveAllFacts |

PURPOSE: Removes all facts from the FactList.
RemoveHashedFact |
PURPOSE: Removes a fact from the FactHashTable.

20 Fact Manager Module

ARGUMENTS: A fact.

RemoveOldFacts |

PURPOSE: Returns facts in the list of GarbageFacts to the memory
manager. Facts are only returned if there are no outstanding
references to them (e.g. they are not being used by the
currently executing rule or other facts do not refer to them)
and the evaluation depth at which they were created is
greater than the current evaluation depth.

RetractFact |

PURPOSE: Coordinates retraction of a fact from the FactList.

ARGUMENTS: A fact.

ReturnElements |

PURPOSE: Returns the data structures associated either with a fact or a
multifield to the memory manager.

ARGUMENTS: A fact or a multifield (both use the same structures).

OTHER NOTES: Fact or multifield should be deinstalled using FactDeinstall
or SegmentDeinstall respectively before removal.

SegmentDeinstall |

PURPOSE: Decrements count values for the constant values (symbols,
strings, integers, floats, etc.) found in a multifield value.
Decrements the number of references to the multifield by
one.

ARGUMENTS: A multifield (which is stored using fact data structures).

Segmentinstall |

PURPOSE: Increments count values for the constant values (symbols,
strings, integers, floats, etc.) found in a multifield value.
Increments the number of references to the multifield by one.

ARGUMENTS: A multifield (which is stored using fact data structures).

SetFactDuplication |

PURPOSE: Sets the current value of the FactDuplication flag.
ARGUMENTS: A boolean value (the new value of the flag).

CLIPS Architecture Manual 91

RETURNS: A boolean value (the old value of the flag).

| SetFactID |

PURPOSE: Sets the value of NextFactID.

ARGUMENTS: An integer.

| SetFactListChanged |

PURPOSE: Sets value of ChangeToFactList.

ARGUMENTS: Boolean value.

| StringToFact |

PURPOSE: Parses a string and converts it to a fact. The string should be
a series of constants and should not contain enclosing
parentheses.

ARGUMENTS: A string.

RETURNS: A pointer to the newly created fact.

| StringToMultifield |

PURPOSE: Parses a string and converts it to a multifield value. The
string should be a series of constants and should not contain
enclosing parentheses.

ARGUMENTS: A string.

RETURNS: A pointer to the newly created multifield value.

INTERNAL FUNCTIONS

| InitializeFactHashTable |

PURPOSE: Initializes the FactHashTable.

| ResetFacts |

PURPOSE: Resets the facts whenever a reset command is performed.
This functions is also used for the clear command.

92 Fact Manager Module

Fact Commands Module

The Fact Commands Module (factcom.c) provides a number of commands for
manipulating and examining facts. The commands provided are assert, retract,
save-facts, load-facts, facts, fact-index, dependencies, dependents, set-
fact-duplication, and get-fact-duplication.
GLOBAL VARIABLES

None.
INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

| InitFactCommands |

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Fact Commands |

PURPOSE: A series of commands which define the fact commands listed
above. See the Basic Programming Guide for more detalil
on individual functions.

OTHER NOTES: Some functionality for these commands is provided in other
modules.

CLIPS Architecture Manual 93

Deffacts Manager Module

The Deffacts Manager Module (deffacts.c) manages all aspects of deffacts construct in-
cluding parsing, execution, and removal. For a description of the deffacts construct,
see the Basic Programming Guide. The deffacts construct capability can be removed
by using the appropriate compile flag in the setup header file.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

DeffactsArray |
PURPOSE: A pointer to an array of deffacts loaded using the bload
command.

DeletionsLegal |

PURPOSE: A boolean flag indicating whether deffacts can be deleted
(deffacts cannot be deleted while they are being reset).
LastDeffacts |
PURPOSE: A pointer to the last deffacts in the ListOfDeffacts.

ListOfDeffacts |

PURPOSE: A linked list of all the currently defined deffacts.
NumberOfDeffacts |
PURPOSE: An integer count of the number of facts in the

ListOfDeffacts.

GLOBAL FUNCTIONS

CreatelnitialFactDeffacts |

PURPOSE: Creates the initial-fact deffacts.

DeleteDeffacts |

PURPOSE: Deletes a deffacts from the ListOfDeffacts.

ARGUMENTS: A pointer to the deffacts to be deleted.

CLIPS Architecture Manual 95

RETURNS: Boolean value. TRUE if the deffacts was found and deleted,
otherwise FALSE.

DeleteNamedDeffacts |

PURPOSE: Deletes a named deffacts from the ListOfDeffacts.
ARGUMENTS: The name of the deffacts to be deleted.
RETURNS: Boolean value. TRUE if the deffacts was found and deleted,

otherwise FALSE.

FindDeffacts |

PURPOSE: Finds a named deffacts in the ListOfDeffacts.
ARGUMENTS: The name of the deffacts to be found.
RETURNS: A pointer to the deffacts if found, otherwise NULL.
GetDeffactsName |
PURPOSE: Returns the name of a deffacts.
ARGUMENTS: A pointer to a deffacts.
RETURNS: String name of the deffacts.
GetDeffactsPPForm |
PURPOSE: Returns the pretty print representation of a deffacts.
ARGUMENTS: A pointer to a deffacts.
RETURNS: The string pretty print representation of the deffacts.
GetNextDeffacts |
PURPOSE: Allows access to the ListOfDeffacts.
ARGUMENTS: A pointer to a deffacts in the ListOfDeffacts.
RETURNS: If passed a NULL pointer, returns the first deffacts in the

ListOfDeffacts. Otherwise, returns the next deffacts
following the deffacts passed as an argument.

926 Deffacts Manager Module

InitializeDeffacts |

PURPOSE: Initializes the deffacts construct. Creates the initial-fact
deffacts, adds reset, clear,save, bload, bsave, and
constructs-to-c functions for deffacts, and defines the
functions undeffacts, list-deffacts, and ppdeffacts.

IsDeffactsDeletable |

PURPOSE: Indicates whether a deffacts can be deleted.
ARGUMENTS: A pointer to a deffacts.
RETURNS: Boolean value. TRUE if the deffacts can be deleted,

otherwise FALSE.

ListDeffacts |

PURPOSE: Displays the ListOfDeffacts.

ListDeffactsCommand |

PURPOSE: Implements the list-deffacts command. Uses the driver
function ListDeffacts.

PPDeffacts |

PURPOSE: Pretty prints a deffacts.

ARGUMENTS: Name of deffacts to be pretty printed and logical name of the
output source.

PpdeffactsCommand |

PURPOSE: Implements the ppdeffacts command. Uses the driver
function PPDeffacts.

RemoveAllDeffacts |

PURPOSE: Removes all deffacts from the ListOfDeffacts.

SetListOfDeffacts |

PURPOSE: Sets the ListOfDeffacts to the specified value. Normally
used when initializing a run-time module or when bloading a
binary file to install the ListOfDeffacts.

ARGUMENTS: A pointer to a linked list of deffacts.

CLIPS Architecture Manual 97

UndeffactsCommand |

PURPOSE: Implements the undeffacts command.

INTERNAL FUNCTIONS

ClearDeffacts |

PURPOSE: Deffacts construct clear function. Removes all deffacts and
creates the initial-fact deffacts.

Deffacts Bload/Bsave Functions |

PURPOSE: A set of functions used by the bload and bsave commands
to process the deffacts construct. These functions are made
available to the bload and bsave commands by calling the
function AddBinaryltem.

Deffacts Constructs-To-C Functions |

PURPOSE: A set of functions used by the constructs-to-c command to
process the deffacts construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorltem.

ParseDeffacts |

PURPOSE: Coordinates all actions necessary for the construction of a
deffacts into the current environment. Called to parse a
deffacts construct.

ARGUMENTS: Logical name from which deffacts input is read.
OTHER NOTES: Makes use of parsing functions from other modules such as

the GetConstructNameAndComment function and the
BuildRHSAssert function.

ResetDeffacts |

PURPOSE: Deffacts construct reset function. Asserts all facts associated
with deffacts into the FactList.

SaveDeffacts |

PURPOSE: Deffacts construct save function. Pretty prints all deffacts to
the given logical name.

ARGUMENTS: A logical name to which output is sent.

98 Deffacts Manager Module

CLIPS Architecture Manual

99

Defglobal Manager Module

The Defglobal Manager Module (defglobl.c) manages all aspects of defglobal
construct including parsing, execution, and removal. For a description of the defglobal
construct, see the Basic Programming Guide. The defglobal construct capability can
be removed by using the appropriate compile flag in the setup header file.

GLOBAL VARIABLES

| ChangeToGlobals |

PURPOSE: Boolean flag. If TRUE, indicates that a new global variable
has been added or an existing global variable has been
altered.

INTERNAL VARIABLES

| BDefglobalArray |

PURPOSE: A pointer to an array of defglobal data structures loaded
using the bload command. This variable is the bload
equivalent of the DefglobalArray variable.

| BDefglobalPointersArray |

PURPOSE: A pointer to an array containing pointers to the defglobal
data structures loaded using the bload command. This
variable is the bload equivalent of the
DefglobalPointersArray variable.

| DefglobalArray |

PURPOSE: A pointer to an array containing the defglobal data
structures. Global variables in stored in the array so that they
can be referred to by integer indexes for quick reference.

| ListOfDefglobals |

PURPOSE: A linked list of structures containing pointers to all the
currently defined defglobals.

| NumberOfDefglobals |

PURPOSE: An integer count of the number of global variables in the
ListOfDefglobals and the DefglobalArray.

CLIPS Architecture Manual 101

ResetGlobals |

PURPOSE: Boolean flag. If TRUE, indicates that globals will be reset to
their original values when a reset command is performed.
By being reset, the original expression associated with the
global variable is reevaluated and then assigned to the
global variable. If this flag is FALSE, then global variable
values are not changed during a reset.

SizeOfDefglobalArray |

PURPOSE: An integer count of the maximum number of global variables
which can be stored in the DefglobalArray.

WatchGlobals |

PURPOSE: Boolean flag. If TRUE, indicates that changes to globals
should be displayed.

GLOBAL FUNCTIONS

ClearDefglobals |

PURPOSE: Defglobals construct clear function. Removes all defglobals.

FindDefglobal |

PURPOSE: Finds a named defglobal in the DefglobalArray.
ARGUMENTS: The name of defglobal to be found.
RETURNS: A pointer to the defglobal if found, otherwise NULL.

GetActualDefglobal |

PURPOSE: Given a pointer returned by FindDefglobal or
GetNextDefglobal, returns a pointer to the data structure
where the global variable information is actually stored.

ARGUMENTS: A pointer to a ListOfDefglobals data structure which
contains a pointer to a defglobal data structure.

RETURNS: A pointer to a defglobal data structure.

GetDefglobalValue |

PURPOSE: Gets the value of a global variable.

102 Defglobal Manager Module

ARGUMENTS: The name of the global variable and a pointer to a data
structure in which the value of the global variable is to be
stored.

RETURNS: Boolean value. TRUE if the global variable was found,
otherwise FALSE.

GetDefglobalName |

PURPOSE: Returns the name of a defglobal.
ARGUMENTS: A pointer to a defglobal.
RETURNS: String name of the defglobal.

GetDefglobalPPForm |

PURPOSE: Returns the pretty print representation of a defglobal and its
original expression value when it was defined.

ARGUMENTS: A pointer to a buffer in which to store the pretty print
representation, the size of the buffer, and a pointer to a
defglobal.

RETURNS: No return value. The buffer passed as an argument is used

to store the pretty print representation.

GetDefglobalValueForm |

PURPOSE: Returns the pretty print representation of a defglobal and its
current value.

ARGUMENTS: A pointer to a buffer in which to store the pretty print
representation, the size of the buffer, and a pointer to a
defglobal.

RETURNS: No return value. The buffer passed as an argument is used

to store the pretty print representation.

GetGlobalsChanged |

PURPOSE: Returns the value of ChangeToGlobals.

GetIndexedDefglobal |

PURPOSE: Given an integer index n, returns a pointer to the nth
defglobal data structure in the DefglobalsArray.

ARGUMENTS: An integer index.

CLIPS Architecture Manual 103

RETURNS:

A pointer to a defglobal data structure.

GetNextDefglobal |

PURPOSE:
ARGUMENTS:

RETURNS:

Allows access to the ListOfDefglobals.
A pointer to a defglobal in the ListOfDefglobals.
If passed a NULL pointer, returns the first defglobal in the

ListOfDefglobals. Otherwise, returns the next defglobal
following the defglobal passed as an argument.

GetNumberOfDefglobals |

PURPOSE:

RETURNS:

Returns the value of the NumberOfDefglobals.

An integer value.

GetResetGlobals |

PURPOSE:
RETURNS:

Returns the current value of the ResetGlobals flag.

A boolean value.

GetResetGlobalsCommand |

PURPOSE:

Implements the get-reset-globals command.

GlobalRtnUnknown |

PURPOSE:

ARGUMENTS:

RETURNS:

Access function placed within CLIPS expressions to retrieve
the values of global variables.

A pointer to a data structure in which to return a value. The
integer index which indicates which global value to retrieve
Is stored in the argument list of this function's expression.

No value. The value of the defglobal is stored in the data
structure passed as an argument.

InitializeDefglobal |

PURPOSE:

104

Initializes the defglobal construct. Creates the globals watch
item, adds reset, clear,save,bload, bsave, and
constructs-to-c functions for defglobals, and defines the
functions set-reset-globals and get-reset-globals.

Defglobal Manager Module

ListDefglobals |

PURPOSE: Displays the ListOfDefglobals allow with their current
values.

ListDefglobalsCommand |

PURPOSE: Implements the list-defglobals command.

PpdefglobalCommand |

PURPOSE: Implements the ppdefglobal command.

QFindDefglobal |

PURPOSE: Finds a named defglobal in the DefglobalArray.

ARGUMENTS: The name of defglobal to be found. This argument is
specified as a pointer to a SymbolTable entry rather than a
character string.

RETURNS: A pointer to the defglobal if found, otherwise NULL.

QGetDefglobalValue |

PURPOSE: Gets the value of a global variable.

ARGUMENTS: The integer index of the global variable and a pointer to a
data structure in which the value of the global variable is to
be stored.

OTHER NOTES: This function is quicker than GetDefglobalValue since the

position of the global variable in the DefglobalArray does
not have to be determined.

QSetDefglobalValue |

PURPOSE: Sets the value of a global variable.

ARGUMENTS: The integer index of the global variable and a pointer to a
data structure in which the new value of the global variable
Is stored.

RETURNS: Boolean value. TRUE if the global variable was found and its

value changed, otherwise FALSE.

OTHER NOTES: This function is quicker than SetDefglobalValue since the
position of the global variable in the DefglobalArray does
not have to be determined.

CLIPS Architecture Manual 105

ReplaceGlobalVariable |

PURPOSE: Replaces a reference to a global variable within an
expression with a function call to GlobalRtnUnknown that
refers to the variable by an index for quick reference.

ARGUMENTS: A pointer to an expression.

RETURNS: Boolean value. TRUE if the global variable reference was
replace, otherwise FALSE (the global could not be found).

ResetDefglobals |

PURPOSE: Defglobals construct reset function. If the ResetGlobals
flag is TRUE, then all global variables are reset to their
original values.

SetDefglobalValue |

PURPOSE: Sets the value of a global variable.

ARGUMENTS: The name of the global variable and a pointer to a data
structure in which the new value of the global variable is
stored.

RETURNS: Boolean value. TRUE if the global variable was found and its

value changed, otherwise FALSE.

SetGlobalsChanged |

PURPOSE: Sets value of ChangeToGlobals.
ARGUMENTS: Boolean value.

SetListOfDefglobals |

PURPOSE: Sets the ListOfDefglobals, DefglobalArray, and
NumberOfDefglobals, and SizeOfDefglobalArray to
the specified values. Normally used when initializing a
run-time module or when bloading a binary file.

ARGUMENTS: A pointer to a linked list of defglobals, an array in which the
defglobal values are stored, and the number of defglobals
contained in the array (which is also the size of the array).

SetResetGlobals |

PURPOSE: Sets the current value of the ResetGlobals flag.

106 Defglobal Manager Module

ARGUMENTS:
RETURNS:

A boolean value (the new value of the flag).

A boolean value (the old value of the flag).

SetResetGlobalsCommand |

PURPOSE:

Implements the set-reset-globals command.

INTERNAL FUNCTIONS

AddDefglobal |

PURPOSE:

ARGUMENTS:

OTHER NOTES:

Adds a global variable to the ListOfDefglobals and the
DefglobalArray. If the global variable already exists, then it
is replaced.

The name of the global variable, a pointer to a data structure
in which the global's initial value is stored, and a pointer to
the expression to be evaluated to determine the global's
value whenever it is reset.

The DefglobalArray is dynamically expanded if the
SizeOfglobalArray is not large enough to contain the new
global variable.

Defglobal Bload/Bsave Functions |

PURPOSE:

A set of functions used by the bload and bsave commands
to process the defglobal construct. These functions are made
available to the bload and bsave commands by calling the
function AddBinaryltem.

Defglobal Constructs-To-C Functions |

PURPOSE:

A set of functions used by the constructs-to-c command to
process the defglobal construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorltem.

GetVariableDefinition |

PURPOSE:

ARGUMENTS:

CLIPS Architecture Manual

Parses a single variable definition within a defglobal
construct. If no errors occur while defining the variable, the
function AddDefglobal is called to add the new global
variable to the ListOfDefglobals.

Logical name from which defglobal input is read and a
pointer to an integer error flag.

107

RETURNS: Boolean value. FALSE if an error occurred while parsing,
otherwise TRUE. The value of the error flag passed as an
argument is also set by this function.

OTHER NOTES: Uses the function ParseAtomOrExpression to parse the
expression assigned to the global variable. The function
EvaluationExpression is then called to determine the
initial value of the variable.

ParseDefglobal |

PURPOSE: Coordinates all actions necessary for the construction of a
defglobal into the current environment. Called to parse a
defglobal construct.

ARGUMENTS: Logical name from which defglobal input is read.

RETURNS: Boolean value. TRUE if an error occurred while parsing,
otherwise FALSE.

OTHER NOTES: Uses the function GetVariableDefinition to perform the
majority of parsing.

SaveDefglobals |

PURPOSE: Defglobal construct save function. Pretty prints all defglobals
to the given logical name.

ARGUMENTS: A logical name to send output.

108 Defglobal Manager Module

Defrule Parser Module

The Defrule Parser Module (ruleprsr.c) coordinates the parsing of the LHS of the rule
(as well as providing functions for parsing the RHS of a rule). LHS conditional
elements are represented internally using the following format:

1st Conditional El enent --> CE informati on
I

2nd Condi ti onal El enent --> CE informati on
I

3rd Conditional El enent --> CE informati on

nth Conditional El enent --> CE informati on

If the conditional element is a test CE, the CE information will be an expression
stored using the standard format for an expression. The CE information for a
connected conditional element (an and CE, or CE, or logical CE) follows the format
shown above. The information for a pattern CE or a not CE is used to represent the
fields of the pattern.

As an examples, the conditional elements for the following rule

(defrul e exanpl e
(pattern 1)
(or (pattern 2a)
(pattern 2b))
(not (pattern 3))
(pattern 4)
:>)

would be stored as

CLIPS Architecture Manual 109

pattern CE --> pattern 1 information
or CE --> pattern CE --> pattern 2a information
|
pattern CE --> pattern 2b information
not CE --> pattern 3 information
pattern CE --> pattern 4 infornmation

The CE information for pattern CEs and not CEs is stored using the following
format:

1st field --> 2nd field --> 3rd field ... nth field
I I I I

field info field info field info field info

Information for each field is stored in the following format:

first variable (if any)
|

1st | connective constraint --> & connective constraints
|

2nd | connective constraint --> & connective constraints
L]
L]
L]

nth | connective constraint --> & connective constraints

The first-binding occurrence of a variable is stored first in the structure (if it exists). A
first-binding occurrence of a variable for a field in a pattern is a variable by itself or a
variable followed by an & connective constraint. The variable cannot be negated. First
occurrences of the variable ?x in a field of a pattern would include

?X
?x&bl ue| green

110 Defrule Parser Module

but not

~?X
?2x| ?y
red&?x

The structure to contain the first binding variable is also used to indicate whether
the field should match a single field value or a multifield value. Fields without a binding
variable are considered to match against a single field value.

The subsequent bottom links connected to the binding variable structure contain
information about the list of | connective constraints found within the field. Each |
connective constraint of a field can be accessed through the bottom link of the
structure. The first structure to the immediate right of each | connective constraint
represents the first constraint associated with the | connective constraint. Structures to
the right of this first constraint represent other constraints associated with the |
connective constraint through the use of the & connective constraint. Individual
constraints can be literal constraints, predicate constraints, return value constraints,
and/or variable constraints. Any of these constraints may be negated using the ~
connective constraint. When grouping constraints, the | connective constraint in a field
constraint is given a lower precedence than the & connective constraint.

For example, the following field found in a pattern

?x& nunber p(?x) &(+ ?y 3)|:wordp(?x) &red&-green

would be represented as

single field variable x

I
I

nunber p(?x) --> =(+ ?y 3)
I

wor dp(?x) --> ~red --> ~green

GLOBAL VARIABLES

GlobalSalience |

PURPOSE: An integer used to store the evaluated value of the salience
when the rule is defined (i.e. the evaluated value of the
variable SalienceExpression when the rule is defined).

SalienceExpression |

PURPOSE: A pointer to the expression used in the salience declaration
of a rule (which may either be a constant integer, global
variable, or a function call).

CLIPS Architecture Manual 111

INTERNAL VARIABLES

LHSError |

PURPOSE: A global boolean value used to indicate whether an error
has occurred in one of the rule parsing routines.

GLOBAL FUNCTIONS

ParseRuleLHS |

PURPOSE: Coordinates all the actions necessary for parsing the LHS of
a rule including the reordering of pattern conditional
elements to conform with the CLIPS Rete topology.

ARGUMENTS: Logical name from which rule input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A pointer to a linked structure containing the intermediate
LHS representation of a rule. If an error has occurred during
parsing, a null pointer is returned.

ParseRuleRHS |

PURPOSE: Coordinates all the actions necessary for parsing the RHS of
arule.

ARGUMENTS: Logical name from which rule input is read.

RETURNS: An expression structure representing the RHS of a rule.

RestrictionParse |

PURPOSE: Parses a single field within a pattern. This field may either
be a single field wildcard, a multifield wildcard, a single field
variable, a multifield variable, or a series of connected
constraints.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the field.

112 Defrule Parser Module

INTERNAL FUNCTIONS

AssignmentParse |

PURPOSE: Finishes the parsing of pattern conditional elements that
have been bound to a variable.

ARGUMENTS: Logical name from which input is read, and name of the
variable (or the fact address) to which the pattern CE is
bound.

RETURNS: Intermediate LHS representation of the assigned pattern

conditional element.

ConjunctiveRestrictionParse |

PURPOSE: Parses a single constraint field in a pattern that is not a
single field wildcard, multifield wildcard, or multifield
variable. The field may consist of a number of subfields tied
together using the & connective constraint and/or the |
connective constraint.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the field.

ConnectedPatternParse |

PURPOSE: Handles parsing of the connected conditional elements (i.e.
those conditional elements that may contain one or more
other conditional elements). The connected conditional
elements include the and CE, the or CE, and the logical
CE.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the connected
conditional element.

CreatelnitialPattern |

PURPOSE: Creates an LHS representation of the pattern (initial-fact) for
rules which do not contain an LHS.

RETURNS: Intermediate LHS representation of the pattern (initial-fact).

CLIPS Architecture Manual 113

DeclarationParse |

PURPOSE: Parses a defrule declaration. Only salience declarations are
currently allowed.

ARGUMENTS: Logical name from which input is read.

RETURNS: Nothing. Sets value of the variables GlobalSalience and
SalienceExpression.

GroupPatterns |

PURPOSE: Groups a series of connected conditional elements together.

ARGUMENTS: Logical name from which input is read, type of token which
terminates the CE grouping, and string representation of the
terminating token.

RETURNS: Intermediate LHS representation of the grouped patterns.

LHSPattern |

PURPOSE: Parses a single conditional element found on the LHS of a
rule. Conditional element types include pattern CEs (which
may be assigned to a variable), test CEs, not CEs, logical
CEs, and CEs, and or CEs.

ARGUMENTS: Logical name from which input is read, and the type of token
which terminates the conditional element grouping in which
the conditional element is found (e.g. a pattern CE parsed
within an and CE is terminated by a parenthesis while a
pattern CE not enclosed by another CE is terminated by the
=> symbol.

RETURNS: Intermediate LHS representation of the LHS conditional

element.

LiteralRestrictionParse |

PURPOSE:

ARGUMENTS:

RETURNS:

114

Parses a subfield of a field. The subfield may be a literal
constraint, a predicate constraint, a return value constraint,
or a variable constraint. The constraints may also be
negated using the ~ connective constraint.

Logical name from which input is read, and a pointer to a
token structure.

Intermediate LHS representation of the subfield.

Defrule Parser Module

NotPatternParse |

PURPOSE: Handles parsing of not conditional elements.

ARGUMENTS: Logical name from which input is read.

RETURNS: Intermediate LHS representation of the not conditional
element.

RuleBodyParse |

PURPOSE: Parses the LHS of a rule, but does not reorder any of the
LHS patterns to conform with the CLIPS Rete Topology.

ARGUMENTS: Logical name from which rule input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A pointer to a linked structure containing the intermediate
LHS representation of a rule. If an error has occurred during
parsing, a null pointer is returned.

SequenceRestrictionParse |

PURPOSE: Parses a sequence of constraint fields found within a pattern.
This function recognizes deftemplate patterns and will call
the appropriate routines to parse these types of patterns.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the sequence of fields.

SimplePatternParse |

PURPOSE: Parses a simple pattern (an opening parenthesis followed by
one or more fields followed by a closing parenthesis).

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the simple pattern
conditional element.

TagLHSLogicalNodes |

PURPOSE: Marks all and and or conditional elements contained within
a logical conditional element as having the properties
associated with a logical CE.

CLIPS Architecture Manual 115

ARGUMENTS: The LHS representation of a logical conditional element.

| TestPattern |
PURPOSE: Handles parsing of test conditional elements.
ARGUMENTS: Logical name from which input is read.
RETURNS: Intermediate LHS representation of the test conditional
element.

116 Defrule Parser Module

Reorder Module

Basic Rete topology only allows a pattern conditional element to stand by itself or to be
modified with the not conditional element. In addition, the LHS is enclosed within an
implied and conditional element. Combinations of and conditional elements and or
conditional elements are not allowed using basic Rete topology. CLIPS allows these
conditional elements to be used in combination by generating multiple rules which
conform to basic Rete topology from single instances of rules which do not conform to
basic Rete topology. The Reorder Module (reorder.c) reorders a single LHS which
may or may not conform to basic Rete topology into one or more LHSs which do
conform to basic Rete topology. Reordered LHSs have a single top-level or pattern
conditional element (with each argument of the or conditional element representing a
separate rule which must be generated) with multiple and conditional elements
containing one or more pattern conditional elements or not conditional elements but
no other types of conditional elements. For the purposes of reordering, the logical
conditional element behaves identically to the and conditional element.

Reordering involves two major steps: transformation and reduction. Transformation
involves changing a conditional element from one form to another equivalent form.
The transformation performed when reordering patterns involves replacing and/or
conditional elements with equivalent or/and conditional elements. For example,

(and (or (&) (b))
(or (c) (d)))

can be replaced with

(or (and (a)
(or (c) (d)))

(and (b)
(or (c) (d))))

This transformation makes use of the observation that the conditional elements
contained within (or (a) (b)) can be extracted and combined individually with an and
conditional element with copies of the (or (c) (d)) conditional element. The resulting set
of conditional elements can then be placed together using an or conditional element.
This transformation stated more generally is

(and (<CE-a-1> ...
(or <CE-0-1> ... <CE-0-n>)
<CE- a-n>)

can be replaced with

(or (and <CE-a-1> ... <CE-0-1> ... (pattern an))
(and <CE-a-1> ... <CE-0-n> ... (pattern an)))

Reduction involves simplifying conditional elements. The reduction used when
reordering conditional elements involves removing redundant information. For
example, a CE such as (and (and <CE-1> <CE-2>) can be simplified to (and <CE-1>

CLIPS Architecture Manual 117

<CE-2>). This type of reduction will be referred to as adjacency reduction. As another
example,

(or (and (and (a) (b)) (and (c) (d))))
can be converted to
(or (and (a) (b)) (and (c) (d)))

Note that, for this type of simplification, the and/or conditional elements must be
adjacent. For example, the following CE would not be simplified by this type of reduc-
tion:

(or (and (or (a))))

As a point of interest, advanced Rete topology allows the and conditional element
to be incorporated directly into the Rete Join Network. This feature, called joins from
the right, is discussed in further detail in an article by IBM. Currently, joins from the
right are not implemented in CLIPS but, if added, would require changes to the man-
ner in which the reordering of conditional elements is accomplished.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES
None.

GLOBAL FUNCTIONS

CopyNodes |
PURPOSE: Copies a set of patterns.
ARGUMENTS: Patterns to be copied.
RETURNS: A copy of the patterns.
GetNode |
PURPOSE: Creates an empty node structure used for building patterns.
RETURNS: A pointer to an empty node structure initialized with default
values.
ReorderPatterns |
PURPOSE: Reorders a group of patterns to accommodate CLIPS Rete
topology.

118 Reorder Module

ARGUMENTS: A group of patterns.

RETURNS: A modified group of patterns that contains a single top-level
or conditional element followed by one or more and
conditional elements.

| ReturnNodes |

PURPOSE: Returns a set of patterns to the free pool of memory.

ARGUMENTS: Patterns to be returned.

INTERNAL FUNCTIONS

| AdjacentReduction |

PURPOSE: Performs adjacency reduction on a group of patterns.
ARGUMENTS: A group of patterns.
RETURNS: A modified group of patterns.
| ReverseOR |
PURPOSE: Performs a transformation on logical and/or pattern oper-

ators to change them to logical or/and pattern operators.

ARGUMENTS: A group of patterns.

RETURNS: A modified group of patterns.

CLIPS Architecture Manual 119

Variable Manager Module

The Variable Manager Module (variable.c) provides a set of access functions which
are used to retrieve the results of the analysis of the LHS of a rule. Some of the
functions provided can be used to determine the location of a variable on the LHS of a
rule and to obtain the expressions generated for the pattern and join networks. These
access functions are utilized by the Build Module when it adds a rule to the rule
network.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

AnalysisExpressions |

PURPOSE: Maintains a list for each pattern of the expressions to be
evaluated in the pattern and join networks.

CurrentPatterninfo |

PURPOSE: Maintains a list of information about patterns and the
variables contained within them.

GLOBAL FUNCTIONS

CountJoins |

PURPOSE: Determines number of joins needed for the LHS of a rule

RETURNS: An integer representing the number of joins needed for the
LHS of a rule (in essence, the number of patterns on the
LHS of the rule).

OTHER NOTES: Accesses AnalysisExpressions to derive the information.

OTHER NOTES: Accesses AnalysisExpressions to derive the information.

CountPatternFields |

PURPOSE: Determines the number of fields in a pattern.
ARGUMENTS: Pattern number.
RETURNS: An integer representing number of fields in the pattern.

CLIPS Architecture Manual 121

OTHER NOTES: Accesses the variable AnalysisExpressions to derive the
information.

ExpressionComplexity |

PURPOSE: Determines the complexity of an expression for use with the
lex, mea, simplicity, and complexity conflict resolution
strategies.

ARGUMENTS: An pointer to an expression.

RETURNS: An integer value representing the complexity of the

expression. Each function call contained within an
expression adds one to the complexity of the expression
(with an initial complexity of zero). Calls to the and, or, and
not functions do not increase the complexity of an
expression, but function calls made within these functions
do.

FindVariable |

PURPOSE: Searches for the location of the first binding occurrence of a
variable on the LHS of a rule available to a specific pattern
or expression. Such a variable must occur before the pattern
and field in which the reference is made (with the exception
of variables in deftemplate patterns for which forward
referencing is allowed since the position of the fields in the
pattern will be rearranged).

ARGUMENTS: Name of the variable being sought, first pattern in which to
begin looking for the variable, current pattern and field with
which the variable is associated (with a field value of -1
indicating that forward references are allowed), and a value
indicating whether the variable is “inside” or “outside” the
pattern (i.e. a variable inside a not conditional element can
refer to other variables within that CE, but variables outside
of anot CE cannot refer to variables within a not CE).

RETURNS: A pointer to a variable information structure if the variable is
found; otherwise NULL.

OTHER NOTES: Starting pattern and inside/outside values are very useful. By
setting the starting pattern to the current pattern, it can be
determined whether a variable reference within a pattern
can be compared to another variable within the same pattern
as opposed to using a variable in a previous pattern. This
information is useful when determining which expressions
can be placed in the pattern network. The inside/ outside
value allows strict scoping of variables within not CEs. For

122 Variable Manager Module

example, a test CE following a not CE is outside of the not
CE and may not reference any of the variables within the not
CE, while an expression associated with a predicate
constraint used within the not CE is inside the not CE and
may reference variables used within the not CE. If the field
index is set to -1, forward references of variables within a
pattern will be allowed. This is allowed for template patterns
since the variables may be referenced in the proper order
within the original pattern but might be rearranged in an
improper order when the actual pattern to be used is
generated.

FlushAnalysisExpressions |

PURPOSE: Returns structures associated with the global variable
AnalysisExpressions and sets the variable to NULL.

FlushVariableAnalysis |

PURPOSE: Purges all current information about patterns and variables.

GetFactAddressPosition |

PURPOSE: Returns the pattern number (ranging from one to the number
of patterns) corresponding to a fact address variable.

ARGUMENTS: Name of the fact address variable.

RETURNS: Pattern position to which the fact address variable is bound

(or zero if not found).

GetJoinLogic |

PURPOSE: Returns RHS join logic for a particular pattern.
ARGUMENTS: Pattern number.
RETURNS: A character. The character '-' is returned if the connected

pattern is within a not CE and '+' is returned if the connected
pattern is not within a not CE. A '?' is returned if the pattern
number does not correspond to an analyzed join.

| GetNodeType |
PURPOSE: Returns pattern network logic for a field of a given pattern.
ARGUMENTS: Pattern and field number.

CLIPS Architecture Manual 123

RETURNS:

OTHER NOTES:

Logic type. If it can be found, it will be SINGLE, MULTIFIELD,
or STOP. If it cannot be found, it will return UNKNOWN to
signal an error.

Accesses the variable AnalysisExpressions to derive the
information.

GetNotJoinExpression |

PURPOSE:

ARGUMENTS:
RETURNS:
OTHER NOTES:

Returns secondary join network expression for a particular
pattern. The secondary expression is needed when test
expressions are used after a not conditional element.

Pattern number.

Secondary join network expression.

Returns original copy of the expression and sets pointer to
the expression to null. Hence, subsequent calls with the

same pattern number will return null. Accesses
AnalysisExpressions to derive the information.

GetPatternExpression |

PURPOSE:
ARGUMENTS:
RETURNS:
OTHER NOTES:

Returns pattern network test for a particular pattern and field.
Pattern and field number.

Pattern network expression.

Returns original copy of the expression and sets pointer to
the expression to NULL. Hence, subsequent calls with the

same arguments will return NULL. Accesses
AnalysisExpressions to derive the information.

GetPrimaryJoinExpression |

PURPOSE:

ARGUMENTS:
RETURNS:
OTHER NOTES:

124

Returns the primary join network expression for a particular
pattern.

Pattern number.

Primary join network expression.

Returns original copy of the expression and sets pointer to
the expression to NULL. Hence, subsequent calls with the

same pattern number will return NULL. Accesses
AnalysisExpressions to derive the information.

Variable Manager Module

| GetRelationForPattern |

PURPOSE: Returns the relation name (if any) associated with the first
field of an LHS pattern.

ARGUMENTS: An integer index representing the pattern to be checked.

RETURNS: A pointer to the relation name symbol if it exists; otherwise
NULL.

| GetVariableInformation |

PURPOSE: Returns the value of the variable CurrentPatterninfo.

RETURNS: The variable CurrentPatterninfo.

| PatternHasTemplate |

PURPOSE: Determines whether a pattern on the LHS of a rule has an
associated deftemplate.

ARGUMENTS: An integer index representing the pattern to be checked.

RETURNS: Boolean value. True if the first field of the LHS pattern is

associated with a deftemplate; otherwise false.

| RuleComplexity |

PURPOSE: Determines the complexity of a rule for use with the lex, mea,
simplicity, and complexity conflict resolution strategies.

ARGUMENTS: None. The complexity is computed for the rule being
currently analyzed. The variable AnalysisExpressions is
used to derive the complexity information.

RETURNS: An integer value representing the complexity of the rule. The
rule complexity is the sum of the complexity of each
expression associated with the join or pattern network for the
rule computed using the function ExpressionComplexity.

| SetRulelnformation |

PURPOSE: Sets the value of the variable AnalysisExpressions.

ARGUMENTS: The new value.

| SetVariablelnformation |

PURPOSE: Sets the value of the variable CurrentPatterninfo.

CLIPS Architecture Manual 125

ARGUMENTS: The new value.

INTERNAL FUNCTIONS

None.

126 Variable Manager Module

Analysis Module

The Analysis Module (analysis.c) creates the appropriate function calls to be
embedded in the join and pattern network. It also uses both the Variable Module and
the Build Module to create expressions to be placed in the network. When the LHS
representation of a rule is passed to the rule analysis function, several steps in the
generation of an expression occur.

First, the Analysis Module determines the location of variables within the patterns and
if any semantic errors involving the use of variables have occurred. It analyzes the set
of LHS patterns to determine where variables are being bound. It keeps track of fact
address variables the patterns to which they are bound and detects errors in the usage
of variables.

Each pattern has the following information stored about it: Which pattern is it (first,
second, third)? Is the pattern bound to a fact address variable; and, if so, what is the
name of the variable? Is the pattern logically negated? Which variables are bound in
this pattern?

Bound variables are variables which either stand alone in a field or are the first
subfield of a field and are immediately followed by an & connective constraint. Bound
variables have the following information stored about them: the variable name, the
pattern and field numbers in which they are found, and whether the variable is a
single- or multifield variable.

The typical error detected by the Analysis Module is a reference to a variable
before it has been bound. The following rules all incorrectly reference the variable ?x.

(defrule errorl
(fact ~?x)
:>)

(defrule error2
(not (fact ?x))
(data ?x)

:>)

(defrule error3
(data ?y)
(test (> ?x ?y))
:>)

(defrule error4
(not (fact ?x))
(test (> ?x 4))
:>)

(defrule error5
(data ?x | all)
:>)

Rules errorl and error3 simply make a reference to the variable x before the vari-
able has been bound. Rules error2 and error4 demonstrate that the scope of a vari-
able first bound within a not CE is limited strictly to within the not CE. Rule error4 can
be corrected by placing the test within the not CE using & (> ?x 4). Rule error5

CLIPS Architecture Manual 127

also makes an unbound reference to ?x. Variable ?x is the first variable in the field;
however, it is connected with a | connective constraint and, therefore, is not
considered to be a binding occurrence of the variable.

Note that the deftemplate construct generates normal LHS patterns from the LHS
template patterns used in a rule. Because fields may be listed in any order in a tem-
plate pattern, it is possible for a converted template pattern to access a variable before
that variable is defined. For example, given the following deftemplate,

(deftenplate tenp
(field x)
(field y))

the following two rules properly use the template patterns:

(defrul e exanple-1
(temp (x ?x) (y ?y&?x))
:>)

(defrul e exanpl e-2
gifnp (y ?y) (x ?x&7?y))

Notice that, in the template patterns of both rules, variables are defined before they are
used. However, when the conversion from LHS template patterns to normal LHS pat-
terns is performed, the rules appear as follows:

(defrul e exanple-1
(temp ?x ?y&7?X)
:>)

(defrul e exanpl e-2
(t)errp 2X&~?y ?y)
=>

Rule example-1 has no forward references to variables; however, rule example-2 ref-
erences the variable ?y before it is defined. Because fields in a template pattern may
be specified in any order and the specified fields may be rearranged in generating the
actual LHS pattern to be used, forward references to variables in a template pattern
are allowed so long as the variable is contained somewhere within the pattern in
which it is referenced first.

Once the variables within the patterns have been identified, the Generate Module
can then be used to generate expressions for the pattern and join networks. Many
factors must be considered when generating expressions for evaluation in the
networks. Several examples bear mentioning.

(defrul e exanpl el
(foo ?x)
(not (bar ?x))
(test (> ?x 4))
:>)

128 Analysis Module

Rule examplel demonstrates that two separate expressions can be needed for
joins with a not CE. The first expression needed for the not CE is performed on the
pattern itself. This expression checks to see if the ?x in the bar fact is the same as the
?x in the foo fact. The expression (> ?x 4) references ?x in the foo fact but should not
be associated with the other expression. This is necessary for the case where no bar
facts exist. The expression comparing ?x in foo to ?x in bar does not have to be
performed in this case. If the (> ?x 4) expression was associated with the other
expression, the existence of any foo fact along with no bar facts would cause the rule
to be activated. The rule should be activated only for foo's with ?x greater than 4.

(defrul e exanpl e2
(foo ?x)
(bar ?x ?x)
:>)

Rule example2 has two expressions which must be performed for the second pat-
tern. The first expression ensures that the ?x in the bar fact is the same as the ?x in the
foo fact. The second expression ensures that the ?x in the second field of the bar fact is
the same as the ?x in the third field of the bar fact. The expression comparing across
patterns must be done in the join network. The expression comparing ?x's within the
bar pattern can be performed in the pattern network, however.

(defrul e exanpl e3
(foo ?x)
(bar ?x | all)
:>)

Rule example3 demonstrates an example of an expression that must be moved
from the pattern network to the join network. Because the second field in the bar fact
has a comparison to a value first bound in another pattern, the expression for this field
must be moved into the join network. An expression for the constant all cannot be per-
formed in the pattern network because the element can either bind to all or to some as
of yet unspecified value ?x.

(defrul e exanpl e4
(foo ?x& (nunberp ?x))
:>)

Rule example4 is another example of an expression that can be evaluated in the
pattern network since all arguments of numberp can be accessed in the pattern.

(defrul e exanpl e5
(bar ?y)
(foo ?x& (> ?x ?y))
:>)

Rule example5 shows a predicate constraint which must be evaluated in the join
network because of the reference to ?y bound outside of the pattern.

The Analysis Module generates a pattern network expression for every field in a
pattern and a join network expression for every pattern. Not CEs may also have an
additional join network expression. The Analysis Module determines which

CLIPS Architecture Manual 129

expressions are performed in the pattern network and which are done in the join
network. When possible, expressions should be evaluated in the pattern network.

If a particular field has no | connective constraints, few restrictions apply to
expressions which can be evaluated in the pattern network. All tests for constants can
be evaluated in the pattern network. Predicate constraints and return value constraints
can be evaluated in the pattern network as long as references to variables in other
patterns are not made. Expressions comparing two references of the same variable
can be evaluated in the pattern network if both references are found in the same
pattern and one reference is to a bound variable. All other expressions that reference
variables outside of the pattern must be made in the join network. Note that test CEs
are always performed in the join network whereas predicate constraints and return
value constraints may be performed either in the pattern or join network depending on
the variables referenced.

If a field has an | connective constraint in it and references are made to a variable
bound in another pattern that is not bound in this pattern, all expressions for this field
must be performed in the join network. Rule example3 is an example of this type of
reference.

GLOBAL VARIABLES
None.

INTERNAL VARIABLES

DeftemplatePattern |

PURPOSE: Used to indicate whether a pattern being analyzed has an
associated deftemplate.

GLOBAL FUNCTIONS

CheckExpression |

PURPOSE: Verifies that variables within an expression have been ref-
erenced properly. All variables within an expression must
have been previously defined.

ARGUMENTS: A pointer to the expression, the first pattern that can be
checked for a variable reference, the current pattern and
element with which the expression is associated, and a
value indicating whether the expression is “inside” or
“outside” the pattern.

RETURNS: If no error is detected, a pointer to the expression; otherwise
null.

130 Analysis Module

CheckVariables |

PURPOSE:

ARGUMENTS:

RETURNS:

Verifies the proper use of variables on the LHS of a rule.
Checks that fact addresses are not reused or used as vari-
ables within patterns and that variables within patterns are
referenced properly.

The LHS representation of the patterns (which contains no
embedded and CEsoror CES).

Boolean value. TRUE if an error is detected; otherwise
FALSE.

LogicalAnalysis |

PURPOSE:

ARGUMENTS:

RETURNS:

Analyzes for the correct use of logical CEs on the LHS of a
rule. Gaps may not exist between logical CEs and logical
CEs must occurs before other CEs on the LHS of the rule.

A pointer to the intermediate LHS representation of a rule
(which contains no embedded and CEs oror CESs).

-1 if an error was detected, otherwise the integer index of last
logical CE on the LHS of the rule (ranging from one to the
number of patterns in the rule). If the rule has no logical
CEs, then zero is returned.

RuleAnalysis |

PURPOSE:

ARGUMENTS:
RETURNS:

Analyzes a set of patterns for variable bindings, performs
semantic error checking on the use of variables, and deter-
mines expressions which will be evaluated in the pattern
and join networks.

A pointer to the intermediate LHS representation of a rule.

Boolean value. TRUE if a semantic error occurred:; otherwise
FALSE.

VariableAnalysis |

PURPOSE:

ARGUMENTS:

CLIPS Architecture Manual

Analyzes a set of patterns to determine the position of each
pattern in the rule, whether the pattern is contained within a
not CE, and if the pattern is bound to a fact address.

The LHS representation of the patterns (which contains no
embedded and CEsoror CESs).

131

OTHER NOTES:

Creates the data structures and then calls the function
SetVariablelnformation.

INTERNAL FUNCTIONS

| AllVariablesInPattern |

PURPOSE:

ARGUMENTS:

RETURNS:

Determines if all variable references made in a field can be
found within the containing pattern in previous fields. This is
important for determining whether certain expressions can
be evaluated in the pattern network as opposed to the join
network.

A pointer to the field and the pattern and field integer index
numbers.

A boolean value. TRUE if all variable references are con-
tained within the pattern; otherwise FALSE.

| BuildNetworkExpressions |

PURPOSE:

ARGUMENTS:
OTHER NOTES:

Constructs an entry for each pattern CE and test CE
associated with that pattern CE in the LHS of a rule. The
entry contains information about pattern network
expressions associated with each field and primary and
secondary join expressions associated with the pattern.

A pointer to the intermediate LHS representation of a rule.

Creates the data structures and then calls the function
SetRulelnformation.

| CheckFactAddress |

PURPOSE:

Verifies that a fact address has not been used more than
once and has not been used as a variable name.

ARGUMENTS: Name of fact address variable and pattern index to which it is
bound.

RETURNS: Boolean value. TRUE if an error is detected; otherwise
FALSE.

| CheckPattern |

PURPOSE: Verifies that variables within a pattern have been referenced
properly (i.e. that variables have been previously bound if
they are not a binding occurrence).

132 Analysis Module

ARGUMENTS: The LHS representation of the pattern and the pattern index
of the pattern.

RETURNS: Boolean value. TRUE if an error is detected; otherwise
FALSE.
ExtractAnds |
PURPOSE: Loops through a single set of subfields bound together by an

& connective constraint in a field and generates expressions
needed for testing conditions in the pattern and join network.

ARGUMENTS: A pointer to the intermediate LHS representation of the
subfields connected by the & connective constraint, the
integer index of the pattern and field in which the subfields
occur, a boolean flag indicating whether certain tests may be
performed in the pattern network, and a pointer to a data
structure in which expressions to be used in the pattern and
join network will be returned.

RETURNS: No formal return parameter. Returns expressions to be
evaluated in the pattern network and expressions to be
evaluated in the join network in a data structure passed as
an argument.

OTHER NOTES: Uses Generate Module to build subfield expressions.

FieldConversion |

PURPOSE: Generates expressions to be evaluated in the pattern net-
work and join network for a field in a pattern. Uses function
ExtractAnds to generate subfield expressions, then
combines the subfield expressions together.

ARGUMENTS: A pointer to the intermediate LHS representation of the
pattern field, the integer index of the pattern and field in the
LHS of the rule, and a pointer to a data structure in which
expressions to be used in the pattern and join network will
be returned.

RETURNS: No formal return parameter. Returns expressions to be
evaluated in the pattern network and expressions to be
evaluated in the join network in a data structure passed as
an argument.

GetVariables |

PURPOSE: Extracts the variable references from a single pattern.

CLIPS Architecture Manual 133

ARGUMENTS: Intermediate LHS representation of the pattern and the
pattern index number (e.g., first, second, or third pattern in

the rule).

RETURNS: A linked list of structures containing information about each
variable in the pattern.

134 Analysis Module

Generate Module

The Generate Module (generate.c) transforms the basic syntax primitives of a pattern
into expressions which will be placed in the pattern and join networks. & and |
connectives are respectively replaced with the equivalent function call to the and
function or the or function. Other primitives bear mentioning as to the type of
replacements that are made.

Access to specific variables from the join network or RHS uses the getvar function.

(getvar <pattern-np <fiel d-n>)

Access to specific variables from the pattern network uses the getfield function,
which only requires a field specification since the specific pattern is implied by the cur-
rent fact.

(getfield <field-np)

Comparison of variables in the join network uses eqvar and neqvar to test,
respectively, if a set of variables is either equal or not equal. The pattern associated
with the first field in the comparison is assumed to be the pattern entering from the
RHS of the join in which the expression is located. The depth field of the join structure
is used to determine this pattern index.

(eqvar field-n pattern-x field-y)
(neqvar field-n pattern-x field-y)

Equivalent functions for the pattern network are eqfield and neqfield.

(eqfield field-mfield-n)
(neqgfield field-mfield-n)

Constants are evaluated in the pattern network using the constant and
notconstant functions.

(constant <val ue>)
(not const ant <val ue>)

Constants are evaluated in the join network using the following functions. Note that
the callsto eq, neq, and getvar could be removed and a single-level function could
be used.

(eq (getvar <pattern> <field>) <val ue>)
(neq (getvar <pattern> <field>) <val ue>)

The pattern primitive
=(expr essi on)

is replaced with

CLIPS Architecture Manual 135

(eq (getvar <pattern> <field>) (expression))
in the join network and with

(eq (getfield <pattern>) (expression))

in the pattern network. For an inequality comparison (i.e., ~=), neq and neqfield can

be used. The primitive expression
. (expression)
is replaced with

(expr essi on)

The join network uses getvar calls to resolve references, and the pattern network
uses getfield to resolve references. For an constraint used in conjunction with the ~
connective constraint (e.g., ~:), the not function can be wrapped around the

expression.

GLOBAL VARIABLES

PTR_AND |

PURPOSE: A pointer to the data structure for the and function.

PTR_CONSTANT |

PURPOSE: A pointer to the data structure for the constant function.

PTR_EQ |

PURPOSE: A pointer to the data structure for the eq function.

PTR EQ FIELD |

PURPOSE: A pointer to the data structure for the eq_field function.

PTR GET FIELD |

PURPOSE: A pointer to the data structure for the get_field function.

PTR_NEQ |

PURPOSE: A pointer to the data structure for the neq function.

136 Generate Module

| PTR NEQ FIELD |

PURPOSE: A pointer to the data structure for the neq_field function.

| PTR_NOP |

PURPOSE: A pointer to the data structure for the nop function.

| PTR_NOT |

PURPOSE: A pointer to the data structure for the not function.

| PTR_NOTCONSTANT |

PURPOSE: A pointer to the data structure for the notconstant function.

| PTR OR |

PURPOSE: A pointer to the data structure for the or function.

INTERNAL VARIABLES
None.

GLOBAL FUNCTIONS

| CombineExpressions |

PURPOSE: Combines two expressions into a single equivalent expres-
sion. Mainly serves to merge expressions containing and
and or expressions without unnecessary duplication of the
and and or expressions (i.e., two and expressions can be
merged by placing them as arguments within another and
expression, but it is more efficient to add the arguments of
one of the and expressions to the list of arguments for the
other and expression).

ARGUMENTS: Two expressions.
RETURNS: An expression.
OTHER NOTES: Modifies argument expressions to produce the final

expression, so the original expressions are no longer valid
after a call to this function. Null expressions are properly
handled.

CLIPS Architecture Manual 137

GenAnd |

PURPOSE: Generates an and function call with no arguments.
RETURNS: An expression.
GenConstant |
PURPOSE: Produces a constant (such as a symbol, integer, or function
call stub).
ARGUMENTS: The type and value of the constant.
RETURNS: An expression.

GenFourlntegers |

PURPOSE: Generates an argument list consisting of four integers.
ARGUMENTS: Four integer indices.
RETURNS: An expression.
GenGetfield |
PURPOSE: Produces an expression of the form (getfield <field-index>).
ARGUMENTS: Field index.
RETURNS: An expression.
GenGetvar |
PURPOSE: Produces an expression of the form (getvar <pattern-index>
<field-index>).
ARGUMENTS: Pattern and field indices.
RETURNS: An expression.

GenGetvarValue |

PURPOSE: Produces the integer indices for a getvar call.
ARGUMENTS: Pattern and field indices.
RETURNS: A void pointer value containing the encoded integer indices.

138 Generate Module

GenJNColon |

PURPOSE:

ARGUMENTS:

RETURNS:

Generates a join network expression for testing a predicate
constraint. The subfield :<function-call> is converted to the
expression <function-call> and the subfield ~:<function-call>
Is converted to the expression (not <function-call>).
References to variables in the expression are replaced with
getvar calls.

A flag indicating whether the subfield value is negated, the
<function-call> associated with the subfield, the field and
pattern indices of the subfield to be tested, and a flag
indicating whether forward references to variables are
allowed in the expression (for deftemplate patterns only).

An expression.

GenJNConstant |

PURPOSE:

ARGUMENTS:

RETURNS:

Generates a join network expression for use in comparing
subfield values to constants. The subfield <value> is
converted to the expression (eq (getvar <pattern-index>
<field-index>) <value>) and t