
eCos Reference Manual

September 2000

Copyright © 1998, 1999, 2000, Red Hat Inc

Copying terms
The contents of this manual are subject to the Red Hat eCos Public License Version
1.1 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.redhat.com/
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.
The Original Code is eCos - Embedded Configurable Operating System, released
September 30, 1998.
The Initial Developer of the Original Code is Red Hat. Portions created by Red Hat
are Copyright©) 1998, 1999, 2000 Red Hat, Inc. All Rights Reserved.

Trademarks
Java , Sun®, and Solaris are trademarks and registered trademarks of Sun
Microsystems, Inc.
SPARC® is a registered trademark of SPARC International, Inc.
UNIX is a trademark of The Open Group.
Microsoft®, Windows NT®, Windows 95®, Windows 98® and Windows 2000® are
registered trademarks of Microsoft Corporation.
Linux® is a registered trademark of Linus Torvalds.
Intel® is a registered trademark of Intel Corporation.
eCos is a trademark of Red Hat, Inc.
Red Hat® is a registered trademark of Red Hat, Inc.

300-400-1010049-03
2 ■ eCos Reference Manual eCos

Contents

eCos Reference Manual ...1

Part I: Preliminaries ...1

eCos kernel overview..2

The scheduler...2
Thread synchronization ...3
Exceptions..4
Interrupts..5
Counters, clocks, alarms and timers ..6

A tour of the kernel sources...7

Kernel headers ...7
Kernel source files ...10

Part II: Kernel APIs ...16

Requirements for programs ...17

cyg_user_start() ...17
Necessary headers..17
Necessary link instructions ..18
Interrupt and exception handlers ...18
Memory allocation...19
eCos eCos Reference Manual ■ iii

Assertions and bad parameter handling...20

System start-up ...21

System start-up — the HAL ..21
System start-up — cyg_start() ...21
System startup — cyg_prestart() ...22
System startup — cyg_package_start() ...22
System startup — cyg_user_start()..23

Native kernel C language API...24

Types used in programming eCos..24
Thread operations ..27
Priority manipulation ...31
Exception handling ..31
Interrupt handling ..32
Counters, clocks and alarms ..34
Synchronization ...38
Memory pools ..42
Message boxes ...45
Flags...47

µITRON API ..51

Task Management Functions ...53
Task-Dependent Synchronization Functions55
Synchronization and Communication Functions...........................56
Extended Synchronization and Communication Functions...........59
Interrupt management functions ..59
Memory pool Management Functions...60
Time Management Functions ..63
System Management Functions ...64
Network Support Functions ...65

The eCos Hardware Abstraction Layer (HAL)66

Architecture, implementation and platform...................................66
General principles ..67
Architectural HAL files ...67
Future developments..83
iv ■ eCos Reference Manual eCos

Kernel porting notes ..85

eCos Interrupt Model ...94

Part III: PCI Library...98

The eCos PCI Library ..99

PCI Library ..99
PCI Library reference ..104

Part IV: I/O Package (Device Drivers) ..109

Introduction.. 110

User API ... 112

Serial driver details .. 114

“simple serial” driver ...114
 “tty” driver ..120

How to write a driver..123

How to write a serial hardware interface module125

Device Driver Interface to the Kernel ...129

Interrupt Model ..129
Synchronization ...130
Device Driver Models..130
Synchronization Levels ...131
The API..132

Part V: The ISO Standard C and Math Libraries...145

C and math library overview..146

Omitted functionality...147
Included non-ISO functions...147
Math library compatibility modes ...148
Some implementation details...151
Thread safety ...153
C library startup ...153

Index ..155
eCos eCos Reference Manual ■ v

vi ■ eCos Reference Manual eCos

Part I: Preliminaries
eCos eCos Reference Manual n 1

eCos kernel overview
eCos kernel overview

This is an overview of the internal workings of the eCos kernel.

The scheduler
At the core of the kernel is the scheduler. This defines the way in which threads are
run, and provides the mechanisms by which they may synchronize. It also controls the
means by which interrupts affect thread execution. No single scheduler can cover all
possible system configurations. For different purposes we will need to cover several
scheduling polices. In this release two schedulers are provided (described in more
detail in “Sched subdirectory” on page 10):
n a bitmap scheduler
n a multi-level queue scheduler
At present the system will only support a single scheduler at any one time. Future
systems may allow multiple schedulers to co-exist, but this will be hidden behind the
scheduler API in the current release.
To make scheduling safe we need a mechanism to protect the scheduler data structures
from concurrent access. The traditional approach to this is to disable interrupts during
the critical regions. Unfortunately this increases the maximum interrupt dispatch
latency, which is to be avoided in any real-time system.
The mechanisms chosen for eCos is to maintain a counter, Scheduler::sched_lock

1

2 n eCos Reference Manual eCos

eCos kernel overview
that, if non-zero, prevents any rescheduling. The current thread can claim the lock by
calling Scheduler::lock(). This increments the counter and prevents any further
scheduling. The function Scheduler::unlock() decrements the counter and if it
returns to zero, allows scheduling to continue.
For this to work in the presence of interrupts, it is necessary for the Interrupt Service
Routines (ISR) to defer any scheduler-oriented operations until the lock is about to go
zero. We do this by splitting the work of an ISR into two parts, with the second part,
the Deferred Service Routine (DSR), being queued until the scheduler decides it is
safe to run. This is covered in more detail in “Interrupts” on page 5 and “Interrupt and
exception handlers” on page 18.
On a uni-processor, Scheduler::lock() is a simple increment of
Scheduler::sched_lock. It does not need to be a read-modify-write cycle since the lock
is strictly nested. The mere fact that the current thread is running implies that the lock
has not been claimed by another thread, so it is always claimable.
Scheduler::unlock() is generic to all scheduler implementations.

Thread synchronization
To allow threads to cooperate and compete for resources, it is necessary to provide
mechanisms for synchronization and communication. The classic synchronization
mechanisms are mutexes/condition variables and semaphores. These are provided in
the eCos kernel, together with other synchronization/communication mechanisms that
are common in real-time systems, such as event flags and message queues.
One of the problems that must be dealt with in any real-time systems is priority
inversion. This is where a high priority thread is (wrongly) prevented from continuing
by one at lower priority. The normal example is of a high priority thread waiting at a
mutex already held by a low priority thread. If the low priority thread is preempted by
a medium priority thread then priority inversion has occurred since the high priority
thread is prevented from continuing by an unrelated thread of lower priority.
This problem got much attention recently when the Mars Pathfinder mission had to
reset the computers on the ground exploration robot repeatedly because a priority
inversion problem would cause it to hang.
There are several solutions to this problem. The simplest is to employ a priority
ceiling protocol where all threads that acquire the mutex have their priority boosted to
some predetermined value. This has a number of disadvantages: it requires the
maximum priority of the threads using the mutex to be known in advance; if the
ceiling priority is too high it acts as a global lock disabling all scheduling and it is
pessimistic, taking action to prevent the problem even when it does not arise.
A better solution is to use priority inheritance protocol. Here, the priority of the thread
eCos eCos Reference Manual n 3

eCos kernel overview
that owns the mutex is boosted to equal that of the highest priority thread that is
waiting for it. This technique does not require prior knowledge of the priorities of the
threads that are going to use the mutex, and the priority of the owning thread is only
boosted when a higher priority thread is waiting. This reduces the effect on the
scheduling of other threads, and is more optimistic than the priority ceiling protocol.
A disadvantage of this mechanism is that the cost of each synchronization call is
increased since the inheritance protocol must be obeyed each time.
A third approach to priority inversion is to recognize that relative thread priorities
have been poorly chosen and thus the system in which it occurs is faulty. In this case
the kernel needs the ability to detect when priority inversion has taken place, and to
raise an exception when it occurs to aid debugging. Then this code is removed from
the shipping version.
The current eCos release provides a relatively simple implementation of mutex
priority inheritance. This implementation will only work in the multi-level queue
scheduler, and it does not handle the rare case of nested mutexes completely correctly.
However it is both fast and deterministic. Mutex priority inheritance can be disabled if
the application does not require it. This will reduce both code size and data space.
Future releases will provide alternative implementations of mutex priority inheritance,
and application developers will be able to choose the implementation appropriate to
their application.

Exceptions
An exception is a synchronous event caused by the execution of a thread. These
include both the machine exceptions raised by hardware (such as divide-by-zero,
memory fault and illegal instruction) and machine exceptions raised by software (such
as deadline overrun). The standard C++ exception mechanism is too expensive to use
for this, and in any case has the wrong semantics for the exception handling in an
RTOS.
The simplest, and most flexible, mechanism for exception handling is to call a
function. This function needs context in which to work, so access to some working
data is required. The function may also need to be handed some data about the
exception raised: at least the exception number and some optional parameters.
The exception handler receives a data argument which is a value that was registered
with the handler and points to context information. It also receives an
exception_number which identifies the exception taken, and an error code which
contains any additional information (such as a memory fault address) needed to
handle the exception. Returning from the function will allow the thread to continue.
Exception handlers may be either global or per-thread, or both, depending on
4 n eCos Reference Manual eCos

eCos kernel overview
configuration options. If exceptions are per-thread, it is necessary to have an
exception handler attached to each thread.

Interrupts
Interrupts are asynchronous events caused by external devices. They may occur at any
time and are not associated in any way with the thread that is currently running.
The handling of interrupts is one of the more complex areas in RTOS design, largely
because it is the least well defined. The ways in which interrupt vectors are named,
how interrupts are delivered to the software and how interrupts are masked are all
highly architecture- (and in some cases board-) specific. The approach taken in eCos
is to provide a generalized mechanism with sufficient hooks for system-specific code
to be inserted where needed.
Let us start by considering the issue of interrupt vectors. Hardware support differs
greatly here: from the Intel Architecture and the 680X0 having support for vectoring
individual interrupts to their own vectors, to most RISC architectures that only have a
single vector. In the first case it is possible to attach an ISR directly to the vector and
know that it need only concern itself with the device in question. In the second case it
is necessary to determine which device is actually interrupting and then vector to the
correct ISR. Where there is an external interrupt controller, it will be possible to query
that and provide what is essentially a software implementation of hardware vectoring.
Otherwise the actual hardware devices must be tested, by calling the ISRs in turn and
letting them make the determination. Since it is possible for two devices to interrupt
simultaneously, it is necessary to call all ISRs each time an interrupt occurs.
Interrupt masking has a similar variety of support. Most processors have a simple
interrupt mask bit in a status register. The 680X0 has seven levels of masking. Any
board with a interrupt controller can be programmed to provide similar multi-level
masking. It is necessary to keep the interrupt masking mechanism simple and
efficient, and use only architectural support. The cost of manipulating an on-board
interrupt controller may be too high. However, individual device drivers may want
access to their individual mask bits in the interrupt controller, so support for this must
be provided.
Most of the infrastructure necessary for a (somewhat) portable treatment of interrupts
is implemented in the eCos Hardware Abstraction Layer (HAL), which is documented
in “The eCos Hardware Abstraction Layer (HAL)” on page 66.
eCos eCos Reference Manual n 5

eCos kernel overview
Counters, clocks, alarms and timers
If the hardware provides a periodic clock or timer, it will be used to drive
timing-related features of the system. Many CPU architectures now have built in timer
registers that can provide a periodic interrupt. This should be used to drive these
features where possible. Otherwise an external timer/clock chip must be used.
We draw a distinction between Counters, Clocks, Alarms and Timers. A Counter
maintains a monotonically increasing counter that is driven by some source of ticks. A
Clock is a counter driven by a regular source of ticks (i.e. it counts time). Clocks have
a resolution associated with them. A default system Clock is driven by the periodic
interrupt described above, and tracks real-time. Other interrupt sources may drive
other Counters that may or may not track real-time at different resolutions. Some
Counters may be driven by aperiodic events and thus have no relation to real-time at
all.
An Alarm is attached to a Counter and provides a mechanism for generating
single-shot or periodic events based on the counter’s value. A Timer is simply an
Alarm that is attached to a Clock.
The system (including the kernel) represents time in units of ticks. These are
clock-specific time units and are usually the period of the timer interrupt, or a multiple
thereof. Conversion of ticks into conventional time and date units should occur only
when required via library functions. Equivalence between Clock time and real-time
can be made with an RTC (real-time clock), NTP (network time protocol) or user
input.
The representation of the current tick count needs to be 64 bit. This requires either
compiler support for 64 bit integers, or assembly code. Even at the extreme of a 1 ns
tick (ticks will typically be >1ms), this gives a 584 year rollover period.
The Clock API and configuration options that affect clock, counter and alarm
behavior are described in detail in “Counters, clocks and alarms” on page 34.
6 n eCos Reference Manual eCos

A tour of the kernel sources

A tour of the kernel sources

This description takes the form of a tour around the sources explaining their structure
and describing the functionality of each component.
The kernel is divided into two basic parts, the largely machine independent parts in
Cygnus/eCos/packages/kernel/v1_3_x, and the architecture- and platform-specific
parts that comprise the Hardware Abstraction Layer (HAL) in
Cygnus/eCos/packages/hal. These will be described separately. Also note that the
HAL is described in great detail in its own chapter (see “The eCos Hardware
Abstraction Layer (HAL)” on page 66).

Kernel headers
Kernel header files (in Cygnus/eCos/packages/kernel/v1_3_x/include) provide
external interfaces and configuration control for the various kernel objects. In general
there is an include file for each major kernel class. Those header files having to do
with configuration live in the pkgconf subdirectory.
The base name of a header file and the source file that implements it are usually the
same. So, for example, the member functions defined in sched.hxx are implemented
in sched.cxx. For a number of classes there are also header files that define inline
functions, for example sched.inl.
There are some kernel objects that are implemented using C++ templates to allow

2

eCos eCos Reference Manual n 7

A tour of the kernel sources
code re-use in future; it is not intended that these template classes be used generally by
applications. The appropriate concrete kernel classes should be used instead.
Now we examine the files one by one for reference:

include/bitmap.hxx

Bitmap scheduler definition. See source file sched/bitmap.cxx

include/clock.hxx,

include/clock.inl

Counter, clock and alarm functions. See source file common/clock.cxx

include/diag.h

Diagnostic routines. See source file trace/diag.c

include/errors.h

Kernel error codes. See source file common/except.cxx

include/except.hxx

Exception handling.

include/flag.hxx

Flag synchronization objects. See source file sync/flag.cxx

include/instrmnt.h

Instrumentation. See source file instrmnt/meminst.cxx

include/intr.hxx

Interrupts. See source file intr/intr.cxx

include/kapi.h,

include/kapidata.h

Native ’C’ API to the kernel. See source file common/kapi.cxx

include/ktypes.h

Kernel types.

include/llistt.hxx

A simple doubly linked-list template class used elsewhere in the kernel.

include/lottery.hxx

Not used.Lottery scheduler implementation. See source file sched/lottery.cxx

include/mbox.hxx,

include/mboxt.hxx,

include/mboxt2.hxx,

include/mboxt.inl,
8 n eCos Reference Manual eCos

A tour of the kernel sources
include/mboxt2.inl

Message boxes. See source file sync/mbox.cxx; mboxt.hxx and mboxt2.hxx and
mboxt.inl and mboxt2.inl implement the underlying template function.

NOTE The files with a 2 suffix are used by default and provide precise µITRON
semantics.

include/memfixed.hxx,

include/mempoolt.hxx,

include/mempolt2.hxx,

include/mempoolt.inl,

include/mempolt2.inl,

include/mfiximpl.hxx,

include/mfiximpl.inl

Fixed-block allocation memory pools. See source file mem/memfixed.cxx;
mempoolt[2] and mfiximpl are a thread-safety template function and underlying
memory manager respectively.

NOTE The files with a 2 suffix are used by default and provide precise µITRON
semantics.

include/memvar.hxx,

include/mempoolt.hxx,

include/mempolt2.hxx,

include/mempoolt.inl,

include/mempolt2.inl,

include/mvarimpl.hxx,

include/mvarimpl.inl

Variable-block allocation memory pools. See source file mem/memvar.cxx;
mempoolt[2] and mvar are a thread-safety template function and underlying
memory manager respectively.

NOTE The files with a 2 suffix are used by default and provide precise µITRON
semantics.

include/mlqueue.hxx

Multi-level queue scheduler. See source file sched/mlqueue.cxx

include/mutex.hxx

Mutexes. See source file sync/mutex.cxx

include/sched.hxx,

include/sched.inl
eCos eCos Reference Manual n 9

A tour of the kernel sources
General scheduler functions. See source file sched/sched.cxx

include/sema.hxx,

include/sema2.hxx

Semaphores. See source files sync/cnt_sem.cxx and sync/bin_sem.cxx for
counting or binary semaphores respectively.

NOTE The file with a 2 suffix is used by default and provides precise µITRON
semantics.

include/thread.hxx,

include/thread.inl

Threads, regardless of scheduler. See common/thread.cxx

Kernel source files
The kernel source directory (Cygnus/eCos/packages/kernel/v1_3_x/src) is
divided into a number of sub-directories each containing the source files for a
particular kernel subsystem. These sources divide into two classes: those that are
generic to all configurations, and those that are specific to a particular configuration.

Sched subdirectory
sched/sched.cxx

This contains the implementation of the base scheduler classes. The most
important function here is Cyg_Scheduler::unlock_inner() which runs DSRs
and performs any rescheduling and thread switching.

sched/bitmap.cxx

This contains the bitmap scheduler implementation. It represents each runnable
thread with a bit in a bitmap. Each thread must have a unique priority and there is
a strict upper limit on the number of threads allowed.

sched/mlqueue.cxx

This contains the multi-level queue scheduler implementation. It implements a
number of thread priorities and is capable of timeslicing between threads at the
same priority. This scheduler can also support priority inheritance.

sched/lottery.cxx

This contains a lottery scheduler implementation. This implements a CPU share
scheduler based on threads holding a number of lottery tickets. At the start of each
time quantum, a random number is generated and the thread holding the matching
ticket is scheduled. Compensation tickets and ticket donation allow fair sharing
10 n eCos Reference Manual eCos

A tour of the kernel sources
for I/O bound threads and an equivalent mechanism to priority inheritance.

NOTE This scheduler is experimental, and is meant to test the behavior of other parts
of the kernel with a non-orthodox scheduler. It is not meant to be used for real
applications. It is currently under development and is incomplete and
unusable.

Common subdirectory
common/thread.cxx

This implements the basic thread classes. The functions in this file implement the
basic thread controls to sleep and wake threads, change priorities and delay and
time-out. Also defined here is the idle thread that runs when there is nothing else
to do.

common/clock.cxx

This implements the counter, clock and alarm functions. Also defined here is the
system real-time clock that is used to drive timeslicing, delays and time-outs.

common/kapi.cxx

This implements a C API to the basic kernel functions.

common/memcpy.c,

common/memset.c

Standard ANSI memcpy and memset operations; these are here because the
compiler may invoke them for structure operations regardless of the presence of a
C library.

Interrupt subdirectory
intr/intr.cxx

This implements the Interrupt class. Most of this code is concerned with posting
and calling DSRs. The remainder of the interrupt handling code is machine
specific and is in hal_intr.cxx in the HAL directory.

Synchronization subdirectory
sync/mutex.cxx

This contains the implementation of mutexes and condition variables. Mutexes
can optionally be configured to use a priority inheritance mechanism supplied by
the scheduler.

sync/cnt_sem.cxx

This contains the implementation of counting semaphores.

sync/cnt_sem2.cxx
eCos eCos Reference Manual n 11

A tour of the kernel sources
This contains the alternate implementation of counting semaphores which
implements precise µITRON semantics.

sync/bin_sem.cxx

This contains the implementation of binary semaphores.

sync/mbox.cxx

This contains wrapper functions for a message box of (void *) values. The
implementation is the template defined in include/mboxt.hxx which
include/mboxt.inl implements in turn. Message boxes exist in the kernel
specifically to support µITRON compatibility.

sync/flag.cxx

This contains the implementation of flag objects. Flag objects exist in the kernel
specifically to support µITRON compatibility.

Memory management subdirectory
mem/memfixed.cxx

This contains the wrapper functions for a fixed-block allocation memory
manager. The actual implementation is in two parts: include/mfiximpl.hxx
implements the fixed-block memory management algorithms, and template
include/mempoolt.hxx implements thread safety and waiting for memory
management classes. These are combined in memfixed.cxx. Memory pools exist
in the kernel specifically to support µITRON compatibility.

mem/memvar.cxx

This contains the wrapper functions for a variable-block allocation memory
manager. The actual implementation is in two parts: include/mvarimpl.hxx
implements the variable-block memory management algorithms, and template
include/mempoolt.hxx implements thread safety and waiting for memory
management classes. These are combined in memvar.cxx. Memory pools exist in
the kernel specifically to support µITRON compatibility.

Instrumentation subdirectory
instrmnt/meminst.cxx

This contains an implementation of the instrumentation mechanism that stores
instrumentation records in a circular buffer in memory. The size of this buffer is
configurable. The instrumentation flags mechanism allows the generation of
instrumentation records to be controlled on a per-record basis. The header file
cyg/kernel/instrmnt.h contains macros to generate instrumentation records in
various places, and may be configured to only generate instrumentation records
where required.
12 n eCos Reference Manual eCos

A tour of the kernel sources
instrmnt/nullinst.cxx

This contains an implementation of the instrumentation mechanism that does
nothing. By substituting its object file nullinst.o for meminst.o in a build, the
instrumentation mechanism may be disabled without recompiling.

Trace subdirectory
trace/simple.cxx

This contains an implementation of the trace and assert mechanisms that output
textual messages via a set of externally defined functions. These are currently
supplied by the code in trace/diag.c but may be supplied by a device driver in
the future.

trace/fancy.cxx

This contains a (fancier) implementation of the trace and assert mechanisms that
output textual messages via a set of externally defined functions. These are
currently supplied by the code in trace/diag.c but may be supplied by a device
driver in the future.

This more elaborate view was introduced mainly to validate the trace and
assertion macros during development.

trace/null.cxx

This contains an implementation of the trace and assert mechanisms that do
nothing. By substituting its object file null.o for simple.o in a build, the trace
mechanisms may be disabled without recompiling.

trace/diag.c

This contains a number of diagnostic routines that use the HAL supplied
diagnostic output mechanism to format and print strings and numbers. There is
currently no formatted output.

trace/tcdiag.c

This contains an implementation of the testing internal API which uses the
kernel’s diagnostic routines to perform output.

Sload subdirectory
This contains the sources of a simple S-Record loader that may be used in a ROM for
various microprocessor development boards to download code via a serial port.

HAL source files
The HAL is divided into architecture- and platform-specific files. For each
architecture supported, there is an arch directory, containing files generic to that
eCos eCos Reference Manual n 13

A tour of the kernel sources
architecture, and a platform directory, containing files specific to each platform
supported.
Amongst the architectures supported are: the PowerPC, the Tx39 and the MN10300.
To find the code corresponding to each architecture, substitute “powerpc”, “mips” and
“mn10300”, respectively, for “ARCH” in the following file descriptions. Similarly
substitute the appropriate platform name representing your development board for
“PLATFORM”.

Architecture files
ARCH/arch/v1_3_x/include/basetype.h

This file is used to define the base architecture configuration such as endianness
and word size.

ARCH/arch/v1_3_x/include/hal_arch.h

This file contains macros that implement various architecture-specific functions.
The most important macros here are the thread context initialization and switch
macros that are used to implement multithreading.

ARCH/arch/v1_3_x/include/hal_intr.h

This file contains the HAL support for interrupt management and clock support.

ARCH/arch/v1_3_x/include/hal_io.h

This file contains the HAL support for accessing hardware registers. It provides a
portable API that allows more generic device drivers to be written.

ARCH/arch/v1_3_x/include/hal_cache.h

This file contains macros to control any caches that may be present.

ARCH/arch/v1_3_x/include/ARCH_stub.h

This file contains architectural information for a GDB stub, such as the register
layout in a GDB packet.

ARCH/arch/v1_3_x/src/vectors.S

This is an assembly code file that contains the code to handle interrupt and
exception vectors. Since system reset can also be considered an exception, this is
handled here also. Interrupts are currently handled by placing a stub routine in the
hardware vector which calls a Vector Service Routine via an indirection table.
There is a API to allow user-defined VSRs to be installed. The default VSR reads
the interrupt controller registers and decodes the interrupt source into an offset
into a further table of interrupt service routines. It also handles interrupt cleanup,
which may result in the execution of deferred service routines (DSRs) and the
preemption of the current thread.

ARCH/arch/v1_3_x/src/context.S
14 n eCos Reference Manual eCos

A tour of the kernel sources
If present, this is an assembly code file that contains the code to support thread
contexts. The routines to switch between various contexts, as well as initialize a
thread context may be present in this file.

ARCH/arch/v1_3_x/src/hal_misc.c

This file contains the implementation of various miscellaneous HAL routines that
are needed by the kernel or C++ runtime.

ARCH/arch/v1_3_x/src/ARCH_stub.c

This file contains the architectural part of a GDB stub. This deals with
CPU-specific details of the stub, such as the setting of breakpoints and translating
exception data into signals that GDB understands.

ARCH/arch/v1_3_x/src/ARCH.ld

This file is the linker script. During preprocessing it includes linker script
fragments that define the memory layout.

Platform files
ARCH/PLATFORM/v1_3_x/include/hal_diag.h

This file contains the definitions of macros that support the HAL diagnostic
output mechanism.

ARCH/PLATFORM/v1_3_x/include/plf_stub.h

This file contains a set of macros that allow the common GDB stub code to access
the platform-specific minimal serial driver functions.

ARCH/PLATFORM/v1_3_x/src/hal_diag.c

This file contain the implementation of the HAL diagnostic output mechanism.

ARCH/PLATFORM/v1_3_x/src/plf_stub.c

This file contains a minimal serial driver for the target platform that is used by the
GDB stub.

ARCH/PLATFORM/v1_3_x/src/PLATFORM.S

This is an assembler file that contains any platform-specific code. It often contains
platform initialization code called from vectors.S.
eCos eCos Reference Manual n 15

A tour of the kernel sources
Part II: Kernel APIs
16 n eCos Reference Manual eCos

Requirements for programs
Requirements for programs

eCos programs do not have to satisfy any unusual requirements, but there are always
some differences between a program written for a real-time operating system as
opposed to one written for a time sharing, virtual memory system like UNIX or
Windows NT.
This chapter contains checklist of things to remember when writing eCos programs.

cyg_user_start()
The entry point for eCos user programs is usually cyg_user_start() instead of
main(), although main() can be used if the ISO C library package is selected.
Complete detail on the start-up sequence is given in “System start-up” on page 21.

Necessary headers
Any program which uses eCos system calls must have the following line at the top of
the file:
#include <cyg/kernel/kapi.h>

and the programmer must make sure that cyg/kernel/kapi.h is available in the
compiler include path. This can be done by setting the C_INCLUDE_PATH
environment variable or by including the -I flag on the compiler command line.

3

eCos eCos Reference Manual n 17

Requirements for programs
Necessary link instructions
The eCos configuration and building process (described in Getting Started with eCos
and eCos User’s Guide) builds a single library, libtarget.a, which contains the
selected eCos components. The libtarget.a library does not contain any user
libraries: If you put some of your source in libraries, you will have to explicitly
include those libraries in the linking instruction.
You also need to link to the GNU C Compiler runtime support library (libgcc.a).
You should not link to the standard C++ library. This can be achieved with the
-nostdlib option.
You should only link to libtarget.a and libgcc.a using the linker script target.ld
provided with eCos. The command line for linking should look like
gcc [options] [object files] -Ttarget.ld -nostdlib

Interrupt and exception handlers
In eCos a distinction is made between exceptions and interrupts.

exceptions

are the result of some action by the currently executing code. Examples of
exceptions are divide by zero, illegal instruction, bad memory access, etc.

interrupts

are the result of a signal source which is conceptually asynchronous with the
currently executing code. Examples of interrupts sources are the real-time clock,
external and on chip peripherals and so forth.

This distinction is made in the eCos hardware abstraction layer (HAL) to provide a
cleaner and more portable mechanism for installing interrupt handlers and exception
handlers. Individual hardware platforms can have different ways of naming and
handling interrupts, which is why this abstraction layer was chosen.
Interrupts and exceptions are both associated with vectors, which are labeled by vector
numbers (see “Exception handling” on page 31 and “Interrupt handling” on page 32).
There are distinct spaces for exception and interrupt vectors. These are called
“exception vector numbers” and “interrupt vector numbers”. System calls which
install exception handlers use the exception vector number, and the system calls which
install interrupt handlers use the interrupt vector number to specify which interrupt or
exception should be handled by the handler.
The details of the vector layout depend on the microprocessor and interrupt controller,
and are documented in the relevant API sections.
18 n eCos Reference Manual eCos

Interrupt handlers are actually a pair of functions, one of which (the interrupt service
routine, or ISR) is executed immediately and runs with that interrupt disabled. Since
interrupts are disabled for the duration of the ISR, the ISR should be very brief and
should not use any system services.
After the ISR exits, but before the kernel scheduler is invoked again, a delayed service
routine (DSR) will be invoked. It executes with scheduling disabled, but with
interrupts enabled, so that further invocations of the same DSR can be queued. The
DSR can use some producer-side system calls, but it should be carefully crafted to
avoid using any call that might put its thread to sleep. One of the few examples of safe
calls is cyg_semaphore_post(); the non-blocking versions of some system calls are
also safe. A call that is unsafe is cyg_mutex_lock(), since it will block if the mutex is
already locked by another thread.
Finally, eCos has a formalism for installing low level handlers which bypass the
kernel mechanisms described above. A program can install a vector service routine
(VSR) which will be invoked instead of the kernel’s usual exception or interrupt
handling. The VSR will typically be written in assembly language.
VSRs are associated with vector numbers in the exception space, just like exception
handlers (although there are some variations — architectures in which there are no
exceptions in the eCos sense). The main difference between VSRs and exception
handlers is that VSRs bypass the kernel's usual mechanisms.

Memory allocation
Most eCos system calls expect you to pass the address of pre-allocated memory for
the objects created in that system call. This is frequently the preferred way of doing
things for embedded applications, where programmers want to allocate all memory
statically and have fine control over that resource.
In contrast, some eCos system calls also allow a NULL pointer to be passed. In such a
case the kernel will allocate the memory or select default size. This feature is not
supported in the current release, and a warning flag is placed in the documentation for
those routines (like cyg_thread_create()).
eCos provides dynamic memory allocation, based on memory pools, a useful and
flexible approach to memory management inspired by the µITRON compatibility
layer. These are described in “Memory pools” on page 42.
If you configure your system to use the Standard C Library you can also use the
standard malloc() library call.
eCos eCos Reference Manual n 19

Requirements for programs
Assertions and bad parameter handling
This section describes how the eCos kernel and basic packages behave when system
calls are invoked with bad parameters.
In eCos, the basic kernel assertion behavior is configuration-dependent.
By default, assertions are turned off in the kernel. If the kernel is configured to turn
them on, the kernel will make basic assertions, such as checking for invalid
parameters when system calls are invoked. If an assertion fails, the kernel will print a
message to the diagnostic output channel and stop executing.
If the kernel is configured with assertions disabled (usually when the application has
been thoroughly debugged), it will not do any checking.
The configuration sections referenced above also describe the use of preconditions,
postconditions and loop invariants. These are no different from ordinary assertions,
but they are used in specialized circumstances, and the programmer would wish to
select their presence individually.
20 n eCos Reference Manual eCos

System start-up
System start-up

We describe here the steps performed by eCos upon start-up, mentioning how a
programmer can introduce custom start-up routines.

System start-up — the HAL
The HAL (Hardware Abstraction Layer, see “The eCos Hardware Abstraction Layer
(HAL)” on page 66) is the eCos package which contains all start-up code. Its start-up
procedure is outlined in detail in “HAL startup” on page 79, but the main steps can be
summarized here:

1. The HAL initializes the hardware, coordinates with the ROM monitor, and
performs diagnostics.

2. The HAL invokes all static and global C++ constructors.

3. The HAL jumps to cyg_start(), which has the following prototype:
void cyg_start(void)

System start-up — cyg_start()
cyg_start() is the core of the start-up mechanism. The default definition is in
infra/current/src/startup.cxx

4

eCos eCos Reference Manual n 21

System start-up
It calls, in turn,
 cyg_prestart()
 cyg_package_start()
 cyg_user_start()

and then starts the eCos scheduler if the system has been configured to have a kernel
and scheduler.
You can override the default cyg_start() routine by providing your own function by
the same name with the following prototype:

void cyg_start(void)

WARNING Overriding cyg_start() should rarely, if ever, be done. The functions
cyg_prestart() and cyg_user_start() described just below allow enough
flexibility for installing user initialization code safely for almost all
applications.

NOTE If you are supplying your own definition of this function from a C++ file,
make sure it has “C” linkage.

System startup — cyg_prestart()
The default cyg_prestart() function does not do anything; it is meant to be
overwritten if the programmer needs to do any initialization before other system level
initialization.
You can override the default cyg_prestart() routine by providing your own function
by the same name with the following prototype:

void cyg_prestart(void)

NOTE If you are supplying your own definition of this function from a C++ file,
make sure it has “C” linkage.

System startup — cyg_package_start()
The cyg_package_start() allows individual packages to do their initialization
before the main user program is invoked.
Two of the packages shipped with this release of eCos have code in the default
cyg_package_start(): the µITRON and the ISO standard C library compatibility
packages (see “µITRON API” on page 51 and “C and math library overview”
on page 146).
The infrastructure package has configuration options
CYGSEM_START_UITRON_COMPATIBILITY and
CYGSEM_START_ISO_C_COMPATIBILITY which control specialized
22 n eCos Reference Manual eCos

System start-up
initialization.
You can override the default cyg_package_start() routine by providing your own
function by the same name with the following prototype:

void cyg_package_start(void)

but you should be careful to initialize the default packages (if you are using them). An
example user-supplied function might look like:
void cyg_package_start(void)
{
 #ifdef CYGSEM_START_UITRON_COMPATABILITY
cyg_uitron_start(); /* keep the µITRON initialization */
 #endif
my_package_start(); /* make sure I initialize my package */
}

NOTE If you are supplying your own definition of this function from a C++ file,
make sure it has “C” linkage.

System startup — cyg_user_start()
This is the normal entry point for your code. Although a default empty version is
provided by eCos, this is a good place to set up your threads (see “Thread operations”
on page 27).
If you are not including the ISO standard C library package then there will not be a
main() function, so it becomes mandatory to provide this function (see “C library
startup” on page 153).
To set up your own cyg_user_start() function, create a function by that name with
the following prototype:

void cyg_user_start(void)

When you return control from cyg_user_start(), cyg_start() will then invoke the
scheduler, and any threads you created and resumed in cyg_user_start() will be
executed. The preferred approach is to allow the scheduler to be started automatically,
rather than to start it explicitly in cyg_user_start().

CAUTION Remember that cyg_user_start() is invoked before the scheduler (and
frequently the scheduler is invoked as the last step in cyg_user_start()), so
it should not use any kernel services that require the scheduler.

NOTE If you are supplying your own definition of this function from a C++ file,
make sure it has “C” linkage.
eCos eCos Reference Manual n 23

Native kernel C language API

Native kernel C language API

The eCos kernel, like many other real-time kernels, is a library to which the
programmer links an application. System calls resemble library API calls, and there is
no trap mechanism to switch from user to system mode.
We present here the eCos kernel API and the APIs for other kernels provided as
compatibility layers on top of eCos.
Since this API sits on top of a configurable system, the semantics are only weakly
defined. The exact semantics and even the API itself depend on the configuration. For
example if returned error codes were supported this would change the prototype of the
functions. The semantics given in this chapter describe the default configuration.
As mentioned above, all source files which use the kernel C API should have the
following #include statement:
#include <cyg/kernel/kapi.h>

at the head of the file.

Types used in programming eCos
We now describe the types defined for use with eCos. These are available to programs
that include kapi.h.
Most of these types are meant to be opaque — in other words, programmers do not
need to know (and probably should not know) how they are defined. But the types that

5

24 n eCos Reference Manual eCos

Native kernel C language API
are numeric are marked, since it can be useful to use comparison operators.
The definitions for these types can be found in the installed tree, in the file
include/cyg/kernel/kapi.h.
The eCos kernel uses the following naming convention for types:
n Types that can be treated as completely opaque usually have _t suffix.
n Types for which it is necessary to know the implementation do not have a _t

suffix.

cyg_addrword_t
A type which is large enough to store the larger of an address and a machine word.
This is used for convenience when a function is passed data which could be either a
pointer to a block of data or a single word.

cyg_handle_t
A handle is a variable used to refer to eCos system objects (such as a thread or an
alarm). Most eCos system calls that create system objects will return a handle that is
used to access that object from then on.

cyg_priority_t
A numeric type used to represent the priority of a thread, or the priority of an interrupt
level. A lower number means a higher (i.e. more important) priority thread.

cyg_code_t
A numeric type used for various error or status codes, such as exception numbers.

cyg_vector_t
A numeric type used to identify an interrupt vector. Its value is called the interrupt
vector id. This type is used for both ISR vector ids and VSR vector ids.

cyg_tick_count_t
A numeric type used to count counter ticks. The resolution and other details regarding
tick quantities depend on the configuration, but this is a 64 bit type, and no matter
what configuration is chosen it should still last for centuries before it overflows.

cyg_bool_t
A boolean type whose values can be false (0) or true (1).
eCos eCos Reference Manual n 25

Native kernel C language API
cyg_thread_entry_t
A function type for functions that are entry points for threads. It is used in the thread
creation call cyg_thread_create().
To help write thread entry point functions, here is how cyg_thread_entry_t is defined:
typedef void cyg_thread_entry_t(void *);

Examples of thread functions can be found in the programming tutorial in Getting
Started with eCos.

cyg_exception_handler_t
A function type used for installing exception handlers. It is defined as:
typedef void cyg_exception_handler_t(
 cyg_addrword_t data,
 cyg_code_t exception_number,
 cyg_addrword_t info
);

cyg_thread, cyg_interrupt, cyg_counter, cyg_clock,
cyg_alarm, cyg_mbox, cyg_mempool_var, and
cyg_mempool_fix

These types are of the appropriate size to contain the memory used by the respective
kernel objects. These types are only used in the corresponding create call where the
programmer allocates the memory for the object and passes the address to the kernel.
After creation the provided handle is used to reference the object.

cyg_mempool_info
Contains information about a memory pool.
typedef struct {
 cyg_int32 totalmem;
 cyg_int32 freemem;
 void *base;
 cyg_int32 size;
 cyg_int32 blocksize;
 cyg_int32 maxfree; // The largest free block
} cyg_mempool_info;

cyg_sem_t, cyg_mutex_t, and cyg_cond_t
These types are of the appropriate size to contain the memory used by their respective
kernel objects. These objects are always referred to by a pointer to an object of this
type.
26 n eCos Reference Manual eCos

Native kernel C language API
cyg_VSR_t, cyg_ISR_t, and cyg_DSR_t
These are function types used when vector, interrupt and delayed service routines are
installed.
typedef void cyg_VSR_t();
typedef cyg_uint32 cyg_ISR_t(cyg_vector_t vector,
 cyg_addrword_t data);
typedef void cyg_DSR_t(cyg_uint32 vector,
 cyg_ucount32 count,
 cyg_addrword_t data);

cyg_resolution_t
Stores the resolution of a clock. The resolution is defined to be (dividend/divisor)
nanoseconds per tick.
typedef struct { cyg_uint32 dividend;
 cyg_uint32 divisor; }
cyg_resolution_t;

cyg_alarm_t
The function type used for alarm handlers.
typedef void cyg_alarm_t(cyg_handle_t alarm,
 cyg_addrword_t data);

Thread operations
void cyg_scheduler_start(void)

Starts the scheduler with the threads that have been created. It never returns. The
scheduler has been chosen at configuration time. eCos currently ships with three
schedulers: a bitmap scheduler, a multi-level scheduler (selected by default), and an
experimental “lottery” scheduler which is currently incomplete and unusable.
The configuration tool can be used to select between schedulers. The configuration
options are
CYGSEM_SCHED_BITMAP, CYGSEM_SCHED_MLQUEUE and
CYGSEM_SCHED_LOTTERY.

NOTE Interrupts are not enabled until the scheduler has been started with
cyg_scheduler_start().

void cyg_scheduler_lock(void)

Locks the scheduler so that a context switch cannot occur. This can be used to protect
data shared between a thread and a DSR, or between multiple threads, by surrounding
the critical region with cyg_scheduler_lock() and cyg_scheduler_unlock().
eCos eCos Reference Manual n 27

Native kernel C language API
void cyg_scheduler_unlock(void)

Unlocks the scheduler so that context switching can occur again.
void cyg_thread_create(

 cyg_addrword_t sched_info,
 cyg_thread_entry_t *entry,
 cyg_addrword_t entry_data,
 char *name,
 void *stack_base,
 cyg_ucount32 stack_size,
 cyg_handle_t *handle,
 cyg_thread *thread)

Creates a thread in a suspended state. The thread will not run until it has been resumed
with cyg_thread_resume() and the scheduler has been started with
cyg_scheduler_start().
Here is a description of the parameters of cyg_thread_create():

sched_info

Information to be passed to the scheduler. For almost all schedulers this is a
simple priority value, and you can simply pass a non-negative integer when you
create the thread. Even when this holds, some schedulers may have restrictions on
how priorities can be used. For example, the bitmap scheduler can onlyhave one
thread at each priority, so if an already-occupied priority slot is quoted, the next
free slot of lower priority is chosen.

entry

A user-supplied function: it is a routine that begins execution of the new thread.
This function takes a single argument of type cyg_addrword_t, which is usually a
pointer to a block of data, which allows cyg_scheduler_start() to pass data to
this particular thread.

Here is a typedef for the entry function:
typedef void cyg_thread_entry_t(cyg_addrword_t);

entry_data

A data value passed to the entry function. This may be either a machine word
datum or the address of a block of data.

name

A C string with the name of this thread.

stack_base

The address of the stack base. If this value is NULL then cyg_thread_create()
will choose a stack base.
28 n eCos Reference Manual eCos

Native kernel C language API
NOTE Passing a stack base of NULL is not supported in this release. You must pass a
real address for the stack base.

stack_size

The size of the stack for this thread. If this is 0, the default stack size will be used
for this thread.

NOTE Passing a stack size of 0 is not supported in this release. You must pass a real
stack size.

handle

cyg_thread_create() returns the thread handle in this location.

thread

The thread housekeeping information is placed in the memory pointed to by this
parameter. If this pointer is NULL then the memory will be allocated.

NOTE Passing a NULL value for the thread data structure address is not supported in
this release. You must pass a valid address.

void cyg_thread_exit(void)

Exits the current thread. At present this simply puts the thread into suspended state.
void cyg_thread_suspend(

 cyg_handle_t thread)
Suspends the thread. A thread may be suspended multiple times, in which case it
will need to be resumed the same number of times before it will run.

void cyg_thread_resume(

cyg_handle_t thread)
Resumes thread. If a thread has been suspended multiple times it will need to be
resumed the same number of times before it will run. Threads are created in a
suspended state and must be resumed before they will run.

void cyg_thread_yield(void)

Yields control to the next runnable thread of equal priority. If no such thread exists,
then this function has no effect.

void cyg_thread_kill(

 cyg_handle_t thread)
Kills thread.

cyg_bool_t cyg_thread_delete(

 cyg_handle_t thread)
Kills thread and deletes it from the scheduler. If necessary, it will kill thread first
using cyg_thread_kill(thread). If thread does not terminate in response to the kill
message, this function returns false, indicating failure.
eCos eCos Reference Manual n 29

Native kernel C language API
This function differs from cyg_thread_kill() (or calling cyg_thread_exit()
for the current thread) by deregistering the thread from the scheduler. As a result, the
thread handle, thread stack and space passed for the thread housekeeping information
can then be reused. This is not the case if just cyg_thread_kill() or
cyg_thread_exit() is invoked for the thread.

NOTE cyg_thread_delete() only deregisters the thread from the scheduler, it does
not free up any resources that had been allocated by the thread such as
dynamic memory, nor does it unlock any synchronization objects owned by
the thread. This is the responsibility of the programmer. Additionally, unlike
cyg_thread_kill(), the cyg_thread_delete() function cannot be
self-referencing.

EXAMPLE // Delete another thread. This must be done in a loop, waiting
// for the call to return true. If it returns false, go to sleep
// for a while, so that the killed thread gets a chance to run
// and complete its business.
while (!cyg_thread_delete(<thread_handle>) {
 cyg_thread_delay(1);
}

 cyg_handle_t cyg_thread_self(void)

Returns the handle of the current thread.
void cyg_thread_release(

 cyg_handle_t thread)
Break the thread out of any wait it is currently in. Exactly how the thread returns from
the wait operation, and how, if at all, the break is indicated, depends on the
synchronization object it was waiting on.

cyg_ucount32 cyg_thread_new_data_index(void)

Allocates a new per-thread data index from those still available. If no more indexes
are available, and assertions are enabled, an assertion will be raised.

void cyg_thread_free_data_index(

 cyg_ucount32 index)
Return the per-thread data index to the pool.

CYG_ADDRWORD cyg_thread_get_data(

 cyg_ucount32 index)
Retrieve the per-thread data at the given index for the current thread.

CYG_ADDRWORD *cyg_thread_get_data_ptr(

 cyg_ucount32 index)
Return a pointer to the per-thread data at the given index for the current thread. This
should be used with some care since in some future implementation the per-thread
data may be managed by a dynamic mechanism that might invalidate this pointer at
30 n eCos Reference Manual eCos

Native kernel C language API
any time. This pointer should only be considered valid until the next call to the
per-thread data functions.

void cyg_thread_set_data(
 cyg_ucount32 index, CYG_ADDRWORD data)

Store the data in the per-thread data for the current thread at the given index.

Priority manipulation
void cyg_thread_set_priority(

 cyg_handle_t thread,
 cyg_priority_t priority)

Sets the priority of the given thread to the given value. The smaller the value, the
higher the priority of the thread.
Allowed priorities range between 1 and 64. The values of these parameters are
configuration-dependent because they depend on which scheduler has been selected,
and what value has been configured for the
CYGNUM_KERNEL_SCHED_PRIORITIES configuration parameter (see “Thread
operations” on page 27 and “Option: Number of priority levels” in Section V”).
There is always an idle thread, owned by the kernel, running at
CYG_THREAD_MIN_PRIORITY. Because of this, ordinary threads should never be
run at the lowest priority.

cyg_priority_t cyg_thread_get_priority(

 cyg_handle_t thread)
Returns the priority of the given thread.

void cyg_thread_delay(

 cyg_tick_count_t delay)
Puts the current thread to sleep for delay ticks. In a default configuration there are
approximately 100 ticks a second. The actual length of the ticks is given by the
resolution of the real-time clock. See “Counters, clocks and alarms” on page 34 for
more information on counter resolution.

Exception handling
Exception handlers can be installed to deal with various system-level exceptions, such
as alignment errors, resets, timers and so forth. Exception handling is a configurable
feature of eCos and is enabled by default.
The range of values for the exception_number parameter in the functions below
is hardware-dependent, as are the individual exceptions. See
eCos eCos Reference Manual n 31

Native kernel C language API
hal/ARCH/arch/v1_3_x/include/hal_intr for the exception vector definitions
specific to a given architecture.
The exception handler is a function of the following type:

typedef void cyg_exception_handler_t(
 cyg_addrword_t data,
 cyg_code_t exception_number,
 cyg_addrword_t info
);

cyg_exception_handler_t is the type used for functions which are called as a result of
an exception. It is used in the function cyg_exception_set_handler().

void cyg_exception_set_handler(

cyg_code_t exception_number,
cyg_exception_handler_t *new_handler,
cyg_addrword_t new_data,
cyg_exception_handler_t **old_handler,
void **old_data)

Replace current exception handler. This may apply to either the thread, or to a global
exception handler, according to how exception handling was configured (global or
per-thread). The exception may be ignored, or used to specify a particular handler.

void cyg_exception_call_handler(

cyg_handle_t thread,

cyg_code_t exception_number,

cyg_addrword_t exception_info)
Invoke exception handler for the given exception number. The exception handler will
be invoked with exception_info as its third argument.

Interrupt handling
Interrupt handling is by nature machine-specific. The eCos kernel aims to provide
efficiency and flexibility in this area, while maintaining a very low interrupt latency.
To allow the programmer direct access to hardware, the semantics and the interface
can vary from one architecture to another.
The interrupt vectors for a given architecture are defined in
hal/ARCH/arch/v1_3_x/include/hal_intr.h where also special semantics and
caveats of the interrupt capabilities would be described.

typedef void cyg_VSR_t();
typedef cyg_uint32 cyg_ISR_t(cyg_vector_t vector,
32 n eCos Reference Manual eCos

Native kernel C language API
 cyg_addrword_t data);
typedef void cyg_DSR_t(cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data);

enum cyg_ISR_results
{
 CYG_ISR_HANDLED = 1, /* Interrupt was handled */
 CYG_ISR_CALL_DSR = 2 /* Schedule DSR */
};

void cyg_interrupt_create(

cyg_vector_t vector,

cyg_priority_t priority,

cyg_addrword_t data,

cyg_ISR_t *isr,

cyg_DSR_t *dsr,

cyg_handle_t *handle,

cyg_interrupt *intr)
Creates an interrupt object and returns a handle to it. The object contains information
about which interrupt vector to use and the ISR and DSR that will be called after
the interrupt object is attached. The interrupt object will be allocated in the memory
passed in the intr parameter. The interrupt object is not immediately attached; it
must be attached with the cyg_interrupt_attach() call.

void cyg_interrupt_delete(

cyg_handle_t interrupt)
Detaches the interrupt from the vector and frees the corresponding memory.

void cyg_interrupt_attach(

cyg_handle_t interrupt)
Attaches interrupt.

void cyg_interrupt_detach(

cyg_handle_t interrupt)
Detaches interrupt.

void cyg_interrupt_get_vsr(

cyg_vector_t vector,

cyg_VSR_t **vsr)
Returns a pointer to the VSR currently installed on vector.

void cyg_interrupt_set_vsr(

cyg_vector_t vector,
eCos eCos Reference Manual n 33

Native kernel C language API
cyg_VSR_t *vsr)
Sets the current VSR on vector. A VSR directly attaches to the hardware interrupt
vector and needs to be written in assembler.

void cyg_interrupt_disable(void)

Disables all interrupts.
void cyg_interrupt_enable(void)

Enables all interrupts.
void cyg_interrupt_mask(

cyg_vector_t vector)
Programs the interrupt controller to stop delivery of interrupts on vector. On some
architectures this will also disable all lower priority interrupts while on others they
remain enabled.

void cyg_interrupt_unmask(

cyg_vector_t vector)
Programs the interrupt controller to allow delivery of interrupts on the given interrupt
vector.

void cyg_interrupt_acknowledge(

cyg_vector_t vector)
Should be used from inside an ISR to acknowledge receipt of the interrupt. The
interrupt must be acknowledged. If an interrupt is not acknowledged, the interrupt
may trigger immediately after the ISR returns, causing the ISR to be called again in a
loop.

void cyg_interrupt_configure(

cyg_vector_t vector,

cyg_bool_t level,

cyg_bool_t up)
On some interrupt controllers the way an interrupt is detected may be configured. The
level parameter chooses between level- or edge-triggered interrupts. The up
parameter chooses between high and low level for level triggered interrupts or rising
and falling edges for edge triggered interrupts.

Counters, clocks and alarms
Counters

The counter objects provided by the kernel provide an abstraction of the clock facility
that is generally provided. Application code can associate alarms with counters, where
34 n eCos Reference Manual eCos

Native kernel C language API
an alarm is identified by the number of ticks until it triggers, the action to be taken on
triggering, and whether or not the alarm should be repeated.
There are two different implementations of the counter objects. The first stores all
alarms in a single linked list. The alternative implementation uses a table of linked
lists, with the size of the table being a separate configurable option. A single list is
more efficient in terms of memory usage and is generally adequate when the
application only makes use of a small number of alarms. For more complicated
operations it is better to have a table of lists since this reduces the amount of
computation whenever the timer goes off. Assuming a table size of 8 (the default
value) on average the timer code will only need to check 1/8 of the pending alarms
instead of all of them.
The configuration options which select the counter implementation are
CYGIMP_KERNEL_COUNTERS_MULTI_LIST (“Option: Implement counters
using a table of lists” in Section V) and
CYGIMP_KERNEL_COUNTERS_SINGLE_LIST (“Option: Implement counters
using a single list”, in Section V).
The following functions can be used to create and manipulate counters:

void cyg_counter_create(

cyg_handle_t *counter,

cyg_counter *the_counter)
Creates a new counter and places it in the space pointed to by counter. A counter
stores a value that is incremented by cyg_counter_tick(). Alarms may be attached
to counters, and the alarms will trigger when the counter reaches a specified value.

void cyg_counter_delete(

cyg_handle_t counter)
Deletes the given counter and frees the corresponding memory.

cyg_tick_count_t cyg_counter_current_value(

cyg_handle_t counter)
Returns the current value of the given counter.

void cyg_counter_set_value(

cyg_handle_t counter,

cyg_tick_count_t new_value)
Sets the counter's value to new_value.

void cyg_counter_tick(

cyg_handle_t counter)
Advances the counter by one tick.
eCos eCos Reference Manual n 35

Native kernel C language API
Clocks
Clocks are counters which are associated with a stream of ticks that represent time
periods. Clocks have a resolution associated with them, whereas counters do not.
The most frequently used clock is the real-time clock which serves two special
purposes. First, it is necessary to support clock and alarm related functions such as
cyg_thread_delay(). Second, it is needed to implement timeslicing in the mlqueue
and lottery schedulers. If the application does not require either of these facilities, then
it is possible to disable the real-time clock support completely. It is also possible to
disable just timeslicing with the configuration option
CYGSEM_KERNEL_SCHED_TIMESLICE, or just the clock and alarm functions,
using the option CYGFUN_KERNEL_THREADS_TIMER..
The real-time clock is available if the configuration option
CYGVAR_KERNEL_COUNTERS_CLOCK is defined.
Clock resolution is stored in variables of type cyg_resolution_t (see
“cyg_resolution_t” on page 27).

void cyg_clock_create(

cyg_resolution_t resolution,

cyg_handle_t *handle,

cyg_clock *clock)
Creates a clock object with the given resolution and places it in the space pointed
to by clock. A clock is a counter driven by a regular source of ticks. For example the
system real-time clock is driven by a clock interrupt.

void cyg_clock_delete(

cyg_handle_t clock)
Deletes a clock object and frees the associated memory.

void cyg_clock_to_counter(

cyg_handle_t clock,

cyg_handle_t *counter)
Converts a clock handle to a counter handle. The counter functions can then be used
with the counter handle.

void cyg_clock_set_resolution(

cyg_handle_t clock,

cyg_resolution_t resolution)
Changes the resolution of a given clock object.

cyg_resolution_t cyg_clock_get_resolution(

cyg_handle_t clock)
36 n eCos Reference Manual eCos

Native kernel C language API
Returns the resolution of clock.
cyg_handle cyg_real_time_clock(void)

Returns a handle to the system-supplied real-time clock.
cyg_tick_count_t cyg_current_time(void)

Returns the real-time clock’s counter. This is equivalent to executing the code:

 cyg_clock_to_counter(cyg_real_time_clock(), &h),
 cyg_counter_current_value(h);

Alarms

typedef void cyg_alarm_t(cyg_handle_t alarm,
 cyg_addrword_t data);

cyg_alarm_t is the type used for functions which are used to handle alarm events. It is
used in the function cyg_alarm_create().

void cyg_alarm_create(

cyg_handle_t counter,

cyg_alarm_t *alarm_fn,

cyg_addrword_t data,

cyg_handle_t *handle,

cyg_alarm *alarm)
Creates an alarm object. The alarm is attached to the counter and is created in the
memory pointed to by alarm. When the alarm triggers, the handler function
alarmfn is called and is passed data as a parameter. The alarm handler executes in
the context of the function that incremented the counter and thus triggered the alarm.

NOTE If the alarm is associated with the real-time clock, the alarm handler
alarmfn will be invoked by the delayed service routine (DSR) that services
the real-time clock. This means that real-time clock alarm handlers (which are
possibly the most frequently used) must follow the rules of behavior for
DSRs. These rules are outlined in “Interrupt and exception handlers”
on page 18.

void cyg_alarm_delete(

cyg_handle_t alarm)
Disables the alarm, detaches from the counter, invalidates handles, and frees memory
if it was dynamically allocated by cyg_alarm_create().

void cyg_alarm_initialize(

cyg_handle_t alarm,

cyg_tick_count_t trigger,
eCos eCos Reference Manual n 37

Native kernel C language API
cyg_tick_count_t interval)
Initialize an alarm. This sets it to trigger at the tick with value trigger. When an
alarm triggers, this event is dealt with by calling the alarmfn parameter which was
passed when the alarm was created using cyg_alarm_create(). If interval is
non-zero, then after the alarm has triggered it will set itself to trigger again after
interval ticks. Otherwise, if interval is zero, the alarm is will be disabled
automatically once it has triggered.

void cyg_alarm_enable(

cyg_handle_t alarm)
Enables an alarm that has been disabled by calling cyg_alarm_disable().

void cyg_alarm_disable(

cyg_handle_t alarm)
Disables an alarm. After an alarm is disabled it will not be triggered unless it is
subsequently re-enabled by calling cyg_alarm_enable() or is reinitialized by calling
cyg_alarm_initialize().
Note, though, that if a periodic alarm that has been disabled is re-enabled without
reinitializing it will be in phase with the original sequence of alarms. If it is
reinitialized, the new sequence of alarms will be in phase with the moment in which
cyg_alarm_initialize() was called.

Synchronization
Semaphores

The semaphores defined by the type cyg_sem_t are counting semaphores. These
objects are not referred to by handles, but rather by the pointer to the variable in which
the semaphore is created.

void cyg_semaphore_init(

cyg_sem_t *sem,

cyg_ucount32 val)
Initializes a semaphore. The initial semaphore count is set to val.

void cyg_semaphore_destroy(

cyg_sem_t *sem)
Destroys a semaphore. This must not be done while there are any threads waiting on
it.

void cyg_semaphore_wait(

cyg_sem_t *sem)
38 n eCos Reference Manual eCos

Native kernel C language API
If the semaphore count is zero, the current thread will wait on the semaphore. If the
count is non-zero, it will be decremented and the thread will continue running.

cyg_bool_t cyg_semaphore_trywait(

cyg_sem_t *sem)
A non-blocking version of cyg_semaphore_wait(). This attempts to decrement the
semaphore count. If the count is positive, then the semaphore is decremented and
true is returned. If the count is zero then the semaphore remains unchanged, and
false is returned, but the current thread continues to run.

cyg_bool_t cyg_semaphore_timed_wait(

cyg_sem_t *sem,

cyg_tick_count_t abstime)
A time-out version of cyg_semaphore_wait(). This attempts to decrement the
semaphore count. If the count is positive, then the semaphore is decremented and
true is returned. If the count is zero, it will wait for the semaphore to increment. If
however the abstime time-out is reached first, it will return false without
changing state, and the current thread will continue to run.
The cyg_tick_count_t parameter is an absolute time. If a relative time is required, you
should use cyg_current_time with an offset. For example, to time out 200 ticks from
the present you would use:
cyg_semaphore_timed_wait(&sem, cyg_current_time() + 200);

cyg_semaphore_timed_wait() is only available if the configuration option
CYGFUN_KERNEL_THREADS_TIMER is set.

void cyg_semaphore_post(

cyg_sem_t *sem)
If there are threads waiting on this semaphore this will wake exactly one of them.
Otherwise it simply increments the semaphore count.

void cyg_semaphore_peek(

cyg_sem_t *sem,

cyg_count32 *val)
Returns the current semaphore count in the variable pointed to by val.

Mutexes
Mutexes (mutual exclusion locks) are used in a similar way to semaphores. A mutex
only has two states, locked and unlocked. Mutexes are used to protect accesses to
shared data or resources. When a thread locks a mutex it becomes the owner. Only the
mutex’s owner may unlock it. While a mutex remains locked, the owner should not
lock it again, as the behavior is undefined and probably dangerous.
eCos eCos Reference Manual n 39

Native kernel C language API
If non-owners try to lock the mutex, they will be suspended until the mutex is
available again, at which point they will own the mutex.

void cyg_mutex_init(

cyg_mutex_t *mutex)
Initializes a mutex. It is initialized in the unlocked state.

void cyg_mutex_destroy(

cyg_mutex_t *mutex)
Destroys a mutex. A mutex should not be destroyed in the locked state, as the
behavior is undefined.

cyg_bool_t cyg_mutex_lock(

cyg_mutex_t *mutex)
Changes the nutex from the unlocked state to the locked state. When this happens the
mutex becomes owned by the current thread. If the mutex is locked, the current thread
will wait until the mutex becomes unlocked before performing this operation. The
result of this function will be TRUE if the mutex has been locked, or FALSE if it has
not. A FALSE result can result if the thread has been released from its wait by a call to
cyg_thread_release() or cyg_mutex_release().

void cyg_mutex_unlock(

cyg_mutex_t *mutex)
Changes the mutex from the locked state to the unlocked state. This function may only
be called by the thread which locked the mutex, and should not be called on an
unlocked mutex.

void cyg_mutex_release(

cyg_mutex_t *mutex)
Release all threads waiting on the mutex pointed to by the mutex argument. These
threads will return from cyg_mutex_lock() with a FALSE result and will not have
claimed the mutex. This function has no effect on any thread that may haev the mutex
claimed.

Condition Variables
Condition variables are a synchronization mechanism which (used with a mutex)
grants several threads mutually exclusive access to shared data and to broadcast
availability of that data to all the other threads.
A typical example of the use of condition variables is when one thread (the producer)
is producing data and several other (consumer) threads are waiting for that data to be
ready. The consumers will wait by invoking cyg_cond_wait(). The producer will
lock access to the data with a mutex, and when it has generated enough data for the
other processes to consume, it will invoke cyg_cond_broadcast() to wake up the
40 n eCos Reference Manual eCos

Native kernel C language API
consumers. The Getting Started with eCos book has example programs which use
condition variables to implement a simple message passing system between threads.

void cyg_cond_init(

cyg_cond_t *cond,

cyg_mutex_t *mutex)
Initializes the condition variable. A condition variable is attached to a specific mutex.

void cyg_cond_destroy(

cyg_cond_t *cond)
Destroys the condition variable cond. This must not be done on a condition variable
which is in use. After it has been destroyed, it may be subsequently reinitialized.

void cyg_cond_wait(

cyg_cond_t *cond)
Causes the current thread to wait on the condition variable, while simultaneously
unlocking the corresponding mutex. cyg_cond_wait() may be called by a thread
which has the corresponding mutex locked.
The thread can only be awakened by a call to cyg_cond_signal() or
cyg_cond_broadcast() on the same condition variable. When the thread is
awakened, the mutex will be reclaimed before this function proceeds. Since it may
have to wait for this, cyg_cond_wait() should only be used in a loop since the
condition may become false in the meantime. This is shown in the following example:

extern cyg_mutex_t mutex;
extern cyg_cond_t cond;

cyg_mutex_lock(&mutex);
...

while(condition_not_true)
{
 cyg_cond_wait(&cond);
}

...

cyg_mutex_unlock(&mutex);

cyg_bool_t cyg_cond_timed_wait(

cyg_cond_t *cond,

cyg_tick_count_t abstime)
A time-out version of cyg_cond_wait() which waits for a signal or broadcast. If a
signal or broadcast is received it returns true, but if one is not received by
eCos eCos Reference Manual n 41

Native kernel C language API
abstime, it returns false.
The cyg_tick_count_t parameter is an absolute time. If a relative time is required, you
should use cyg_current_time with an offset. For example, to time out 200 ticks from
the present you would use:
cyg_cond_timed_wait(&sem, cyg_current_time() + 200);

cyg_cond_timed_wait() is only available if the configuration option
CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT is set.

void cyg_cond_signal(

cyg_cond_t *cond)
Wakes up at least one thread which is waiting on the condition variable. When a
thread is awakened it will become the owner of the mutex. cyg_cond_signal() may
be called by the thread which currently owns the mutex to which the condition
variable is attached.

void cyg_cond_broadcast(

cyg_cond_t *cond)
Wakes all the threads waiting on the condition variable. Each time a thread is
awakened it will become the current owner of the mutex.

Memory pools
There are two sorts of memory pools. A variable size memory pool is for allocating
blocks of any size. A fixed size memory pool, has the block size specified when the
pool is created and only provides blocks of that size.
Blocking, non-blocking and “blocking with time-out” versions of these calls are
provided.

void cyg_mempool_var_create(

void *base,

cyg_int32 size,

cyg_handle_t *handle,

cyg_mempool_var *var)
Creates a variable size memory pool. The parameters are:

base

base of memory to use for pool

size

size of memory pool in bytes

handle
42 n eCos Reference Manual eCos

Native kernel C language API
returned handle of memory pool

var

space to put pool structure in
void cyg_mempool_var_delete(

cyg_handle_t varpool)
Deletes the variable size memory pool varpool.

void *cyg_mempool_var_alloc(

cyg_handle_t varpool,

cyg_int32 size)
Allocates a block of length size. This will block until the memory becomes
available.

void *cyg_mempool_var_timed_alloc(

cyg_handle_t varpool,

cyg_int32 size,

cyg_tick_count_t abstime)
Allocates a block of length size. If the requested amount of memory is not available, it
will wait until abstime before giving up and returning NULL.

void *cyg_mempool_var_try_alloc(

cyg_handle_t varpool,

cyg_int32 size)
Allocates a block of length size. NULL is returned if not enough is available.

void cyg_mempool_var_free(

cyg_handle_t varpool,

void *p)
Frees memory back into variable size pool.

cyg_bool_t cyg_mempool_var_waiting(

cyg_handle_t varpool)
Returns true if any threads are waiting for memory in pool.

typedef struct {
 cyg_int32 totalmem;
 cyg_int32 freemem;
 void *base;
 cyg_int32 size;
 cyg_int32 blocksize;
 cyg_int32 maxfree; // The largest free block
} cyg_mempool_info;
eCos eCos Reference Manual n 43

Native kernel C language API
void cyg_mempool_var_get_info(

cyg_handle_t varpool,

cyg_mempool_info *info)
Puts information about a variable memory pool into the structure provided.

void cyg_mempool_fix_create(

void *base,

cyg_int32 size,

cyg_int32 blocksize,

cyg_handle_t *handle,

cyg_mempool_fix *fix)
Create a fixed size memory pool. This function takes the following parameters:

base

base of memory to use for pool

size

size of total space requested

blocksize

size of individual elements

handle

returned handle of memory pool

fix

space to put pool structure in
void cyg_mempool_fix_delete(

cyg_handle_t fixpool)
Deletes the given fixed size memory pool.

void *cyg_mempool_fix_alloc(

cyg_handle_t fixpool)
Allocates a block. If the memory is not available immediately, this blocks until the
memory becomes available.

void *cyg_mempool_fix_timed_alloc(

cyg_handle_t fixpool,

cyg_tick_count_t abstime)
Allocates a block. If the memory is not already available, it will try until abstime
before giving up and returning a NULL.

void *cyg_mempool_fix_try_alloc(
44 n eCos Reference Manual eCos

Native kernel C language API
cyg_handle_t fixpool)
Allocates a block. NULL is returned if no memory is available.

void cyg_mempool_fix_free(

cyg_handle_t fixpool,

void *p)
Frees memory back into fixed size pool.

cyg_bool_t cyg_mempool_fix_waiting(

cyg_handle_t fixpool)
Returns true if there are any threads waiting for memory in the given memory pool.

void cyg_mempool_fix_get_info(

cyg_handle_t fixpool,

cyg_mempool_info *info)
Puts information about a variable memory pool into the structure provided.
The fixed size memory pool simply returns blocks of memory of exactly the blocksize
requested. If the pool is being used to allocate memory for a type that has alignment
constraints (such as 4-byte alignment), then it is up to the user to align the memory
appropriately for the type in question. Alternatively, choose a blocksize that is an
exact multiple of the required alignment.
The memory available from the memory pools will not be the same size as the
memory supplied to it. Some of the memory is used for internal data structures of the
allocator. cyg_mempool_fix_get_info() and cyg_mempool_var_get_info() may
be used to determine the available memory.

Message boxes
Message boxes are a primitive mechanism for exchanging messages between threads,
inspired by the µITRON specification. A message box can be created with
cyg_mbox_create() before the scheduler is started, and two threads in a typical
producer/consumer relationship can access it. One thread, the producer, will use
cyg_mbox_put() to make data available to the consumer thread which uses
cyg_mbox_get() to access the data.
The size of the internal message queue is configured by the
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE parameter (see “Message box
queue size”, in Section V). The default value is 10.
Blocking, non-blocking and “blocking with time-out” versions of these calls are
provided.

void cyg_mbox_create(
eCos eCos Reference Manual n 45

Native kernel C language API
cyg_handle_t *handle,

cyg_mbox *mbox)
Creates a message box using the space provided in the mbox parameter, and returns a
handle for future access to that message box.

void cyg_mbox_delete(

cyg_handle_t mbox)
Deletes the given message box.

void *cyg_mbox_get(

cyg_handle_t mbox)
Waits for a message to be available, then retrieves it and returns the address of the
data.

void *cyg_mbox_timed_get(

cyg_handle_t mbox,

cyg_tick_count_t timeout)
Waits for a message to be available, but times out if timeout time passes. This
version of the function is only available if the configuration option
CYGFUN_KERNEL_THREADS_TIMER is turned on.

void *cyg_mbox_tryget(

cyg_handle_t mbox)
Checks to see if a message is ready. If no message is available it returns immediately
with a return value of NULL. If a message is available it retrieves it and returns the
address of the data.

void *cyg_mbox_peek_item(

cyg_handle_t mbox)
Checks to see if a message is ready, and if one is available returns the address of the
data without removing the message from the queue. If no message is available it
returns NULL.

cyg_bool_t cyg_mbox_put(

cyg_handle_t mbox,

void *item)
Places a message in the given message box. If the queue is full it will block until the
message can be sent. It returns true if the message was successfully sent, and false if
the message was not sent and its sleep was awakened by the kernel before the message
could be sent.
The cyg_mbox_put() function is only available if the
CYGMTH_MBOXT_PUT_CAN_WAIT configuration has been selected.

cyg_bool_t cyg_mbox_timed_put(
46 n eCos Reference Manual eCos

Native kernel C language API
cyg_handle_t mbox,

void *item,

cyg_tick_count_t abstime)
A time-out version of cyg_mbox_put(). This will try to place the message in the given
message box. If the queue is full, it will wait until abstime before giving up and
returning false.
The cyg_mbox_timed_put() function is only available if the both the
CYGMFN_KERNEL_SYNCH_MBOXT_PUT_CAN_WAIT and
CYGFUN_KERNEL_THREADS_TIMER configuration have been selected.

cyg_bool_t cyg_mbox_tryput(

cyg_handle_t mbox,

void *item)
Tries to place a message in the given message box. It returns true if the message was
successfully sent, and false if the message could not be sent immediately, usually
because the queue was full.

cyg_count32 cyg_mbox_peek(

cyg_handle_t mbox)
Takes a peek at the queue and returns the number of messages waiting in it.

cyg_bool_t cyg_mbox_waiting_to_get(

cyg_handle_t mbox)
Queries the kernel to see if other processes are waiting to receive a message in the
given message box. Returns true if other processes are waiting, false otherwise.

cyg_bool_t cyg_mbox_waiting_to_put(

cyg_handle_t mbox)
Queries the kernel to see if other processes are waiting to send a message in the given
message box. Returns true if other processes are waiting, false otherwise.

Flags
Flags are a synchronization mechanism which allow a thread to wait for a single
condition or a combination of conditions. The conditions are represented by bits in a
32 bit word. Flags are inspired by the µITRON specification.
Flags are of type cyg_flag_t, which are 32 bit words, and routines are provided to set
or mask some bits in the flag value.
A “consumer side” thread can wait for a “producer side” thread to set the entire
collection of bits, or any subset of them.
eCos eCos Reference Manual n 47

Native kernel C language API
When a thread sets some bits in a flag, all threads whose requirements are now
satisfied are woken up; thus flags have broadcast semantics. A variation on the wait
call can specify that the flag value be cleared when the wait call is satisfied, in which
case the setting of bits would not be a broadcast.
Blocking, non-blocking, and “blocking with time-out” versions of the wait calls are
provided.

void cyg_flag_init(

cyg_flag_t *flag)
Initializes a flag variable.

void cyg_flag_destroy(

cyg_flag_t *flag)
Destroys a flag variable.

void cyg_flag_setbits(

cyg_flag_t *flag,

cyg_flag_value_t value)
Sets the bits in flag which are set in value.
A side effect of cyg_flag_setbits() is that the kernel wakes up any waiting threads
whose requirements are now satisfied.

flag

A pointer to the flag whose bits are being set. The new setting of flag will be
*flag -> (*flag | value).

value

A word whose 1 bits will be also set in *flag.
void cyg_flag_maskbits(

cyg_flag_t *flag,

cyg_flag_value_t value)
Clear the bits in the given flag which are zero in the value. This cannot result in new
threads being eligible for awakening.

flag

A pointer to the flag whose bits are being cleared. The new setting of flag will
be *flag -> (*flag & value).

value

A word whose 0 bits will be also cleared in *flag.
We now describe the cyg_flag_wait(), which frequently uses the following macros:

 #define CYG_FLAG_WAITMODE_AND ((cyg_flag_mode_t)0)
48 n eCos Reference Manual eCos

Native kernel C language API
 #define CYG_FLAG_WAITMODE_OR ((cyg_flag_mode_t)2)
 #define CYG_FLAG_WAITMODE_CLR ((cyg_flag_mode_t)1)

cyg_flag_value_t cyg_flag_wait(

cyg_flag_t *flag,

cyg_flag_value_t pattern,

cyg_flag_mode_t mode)
Wait for all the bits which are one in pattern to be set in the flag value (if mode
is CYG_FLAG_WAITMODE_AND) or for any of the bits which are one in pattern to be
set in the flag value (if mode is CYG_FLAG_WAITMODE_OR).
When cyg_flag_wait() returns, meaning that the condition is met, the flag value
which succeeded is returned from the call; in other circumstances (such as a bad value
for mode or pattern), zero is returned to indicate the error.
If the mode is one of those above plus CYG_FLAG_WAITMODE_CLR, the whole of
the flag value is cleared to zero when the condition is met.
cyg_flag_wait() takes the following parameters:

flag

The value of the flag (set by the thread that called cyg_flag_setbits() or
cyg_flag_maskbits()) is placed in here.

pattern

The set of bits which, if set, will cause the calling thread to be woken up.

mode

A parameter which modifies the conditions for wake-up. It can take the following
values:

CYG_FLAG_WAITMODE_AND

Only wake up if all the bits in mask is set in the flag.

CYG_FLAG_WAITMODE_OR

Wake up if any of the bits in mask is set in the flag.

CYG_FLAG_WAITMODE_AND + CYG_FLAG_WAITMODE_CLR,

CYG_FLAG_WAITMODE_OR + CYG_FLAG_WAITMODE_CLR

Like CYG_FLAG_WAITMODE_AND and CYG_FLAG_WAITMODE_OR, but the
entire flag is cleared to zero when the condition is met, whereas normally only the
bits that are set in pattern would be cleared.

Waiting threads are queued depending on the semantics of the underlying scheduler.
In release 1.3.x, this means that, if the multi-level queue scheduler is selected,
queueing is in FIFO ordering, while the bitmap scheduler supports thread priority
ordered queueing. When some flag value bits become signalled by a call to
eCos eCos Reference Manual n 49

Native kernel C language API
cyg_flag_setbits(), the queue is scanned in order, and each waiting thread in turn
is awoken or re-queued depending on its request. When a thread is awoken, if it made
the wait call with CYG_FLAG_WAITMODE_CLR, the flag value is cleared to zero, and
the scan of queued threads is terminated.

cyg_flag_value_t cyg_flag_timed_wait(

cyg_flag_t *flag,

cyg_flag_value_t pattern,

cyg_flag_mode_t mode,

cyg_tick_count_t abstime)
A time-out version of cyg_flag_wait(). This waits for the condition required by
pattern and mode to be met, or until the abstime time-out is reached, whichever is first.
If the time-out is reached first, zero is returned. This call is only available if the
configuration option CYGFUN_KERNEL_THREADS_TIMER is enabled.

cyg_flag_value_t cyg_flag_poll(

cyg_flag_t *flag,

cyg_flag_value_t pattern,

cyg_flag_mode_t mode)
A non-blocking version of cyg_flag_wait(). If the condition required by pattern and
mode is met, the flag value is returned, otherwise zero is returned. The flag value may
be cleared in the event of success by specifying CYG_FLAG_WAITMODE_CLR in the
mode, as usual.

cyg_flag_value_t cyg_flag_peek(

cyg_flag_t *flag)
Returns the current flag value.

cyg_bool_t cyg_flag_waiting(

cyg_flag_t *flag)
Returns true if there are threads waiting on this flag.
50 n eCos Reference Manual eCos

µITRON API

µITRON API

The µITRON specification defines a highly flexible operating system architecture
designed specifically for application in embedded systems. The specification
addresses features which are common to the majority of processor architectures and
deliberately avoids virtualization which would adversely impact real-time
performance. The µITRON specification may be implemented on many hardware
platforms and provides significant advantages by reducing the effort involved in
understanding and porting application software to new processor architectures.
Several revisions of the µITRON specification exist. In this release, eCos supports the
µITRON version 3.02 specification, with complete “Standard functionality” (level S),
plus many “Extended” (level E) functions. The definitive reference on µITRON is Dr.
Sakamura’s book µITRON 3.0, An Open and Portable Real-Time Operating System
for Embedded Systems. If you have purchased the eCos Developer’s Kit, you will
have received a copy of this book. Otherwise, the book can be purchased from the
IEEE Press, and an ASCII version of the standard can be found online at
http://www.itron.gr.jp/

(The old address
http://tron.um.u-tokyo.ac.jp/TRON/ITRON/

still exists as a mirror site.)
The eCos kernel implements the functionality used by the µITRON compatibility
subsystem. The configuration of the kernel influences the behavior of µITRON
programs.

6

eCos eCos Reference Manual n 51

µITRON API
In particular, the default configuration has time slicing (also known as round-robin
scheduling) switched on; this means that a task can be moved from RUN state to READY
state at any time, in order that one of its peers may run. This is not strictly conformant
to the µITRON specification, which states that timeslicing may be implemented by
periodically issuing a rot_rdq(0) call from within a periodic task or cyclic handler;
otherwise it is expected that a task runs until it is pre-empted in consequence of
synchronization or communications calls it makes, or the effects of an interrupt or
other external event on a higher priority task cause that task to become READY. To
disable timeslicing functionality in the kernel and µITRON compatibility
environment, please disable the CYGSEM_KERNEL_SCHED_TIMESLICE
configuration option in the kernel package. A description of kernel scheduling is in
“Thread operations” on page 27.
For another example, the semantics of task queueing when waiting on a
synchronization object depend solely on the way the underlying kernel is configured.
As discussed above, the multi-level queue scheduler is the only one which is µITRON
compliant, and it queues waiting tasks in FIFO order. Future releases of that scheduler
might be configurable to support priority ordering of task queues. Other schedulers
might be different again: for example the bitmap scheduler can be used with the
µITRON compatibility layer, even though it only allows one task at each priority and
as such is not µITRON compliant, but it supports only priority ordering of task
queues. So which queueing scheme is supported is not really a property of the
µITRON compatibility layer; it depends on the kernel.
In this version of the µITRON compatibility layer, the calls to disable and enable
scheduling and interrupts (dis_dsp(), ena_dsp(), loc_cpu() and unl_cpu()) call
underlying kernel functions; in particular, the xxx_dsp() functions lock the scheduler
entirely, which prevents dispatching of DSRs; functions implemented by DSRs
include clock counters and alarm timers. Thus time “stops” while dispatching is
disabled with dis_dsp().
Like all parts of the eCos system, the detailed semantics of the µITRON layer are
dependent on its configuration and the configuration of other components that it uses.
The µITRON configuration options are all defined in the file pkgconf/uitron.h, and
can be set using the configuration tool or editing this file by hand.
An important configuration option for the µITRON compatibility layer is
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS (see “Option: Return Error
Codes for Bad Params”, in Section V), which allows a lot of the error checking code
in the µITRON compatibility layer to be removed; of course this leaves a program
open to undetected errors, so it should only be used once an application is fully
debugged and tested. Its benefits include reduced code size and faster execution.
However, it affects the API significantly, in that with this option enabled, bad calls do
not return errors, but either cause an assert failure (if that is itself enabled) or
52 n eCos Reference Manual eCos

µITRON API
malfunction internally. There is discussion in more detail about this in each section
below.
We now give a brief description of the µITRON functions which are implemented in
this release. Note that all C and C++ source files should have the following #include
statement:

#include <cyg/compat/uitron/uit_func.h>

Task Management Functions
The following functions are fully supported in this release:

ER sta_tsk(

ID tskid,

INT stacd)
void ext_tsk(void)

void exd_tsk(void)

ER dis_dsp(void)

ER ena_dsp(void)

ER chg_pri(

ID tskid,

 PRI tskpri)
ER rot_rdq(

PRI tskpri)
ER get_tid(

ID *p_tskid)
ER ref_tsk(

T_RTSK *pk_rtsk,

ID tskid)
ER ter_tsk(

ID tskid)
ER rel_wai(

ID tskid)
The following two functions are supported in this release, when enabled with the
configuration option CYGPKG_UITRON_TASKS_CREATE_DELETE with some
restrictions:

ER cre_tsk(
eCos eCos Reference Manual n 53

µITRON API
ID tskid,

T_CTSK *pk_ctsk)
ER del_tsk(

ID tskid)
These functions are restricted as follows:
Because of the static initialization facilities provided for system objects, a task is
allocated stack space statically in the configuration. So while tasks can be created and
deleted, the same stack space is used for that task (task ID number) each time. Thus
the stack size (pk_ctsk->stksz) requested in cre_tsk() is checked for being less than
that which was statically allocated, and otherwise ignored. This ensures that the new
task will have enough stack to run. For this reason del_tsk() does not in any sense
free the memory that was in use for the task’s stack.
The task attributes (pk_ctsk->tskatr) are ignored; current versions of eCos do not need
to know whether a task is written in assembler or C/C++ so long as the procedure call
standard appropriate to the CPU is followed.
Extended information (pk_ctsk->exinf) is ignored.

Error checking
For all these calls, an invalid task id (tskid) (less than 1 or greater than the number of
configured tasks) only returns E_ID when bad params return errors
(CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled, see above).
Similarly, the following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n pk_crtk in cre_tsk() is a valid pointer, otherwise return E_PAR
n ter_tsk() or rel_wai() on the calling task returns E_OBJ
n the CPU is not locked already in dis_dsp() and ena_dsp(); returns E_CTX
n priority level in chg_pri() and rot_rdq() is checked for validity, E_PAR
n return value pointer in get_tid() and ref_tsk() is a valid pointer, or E_PAR
The following conditions are checked for, and return error codes if appropriate,
regardless of the setting of CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:
n When create and delete functions cre_tsk() and del_tsk() are supported, all

calls which use a valid task ID number check that the task exists; if not,
E_NOEXS is returned

n When supported, cre_tsk(): the task must not already exist; otherwise E_OBJ
n When supported, cre_tsk(): the requested stack size must not be larger than that

statically configured for the task; see “Option: Static initializerst”, in Section V
and “Option: Default stack size”, in Section V. Else E_NOMEM

n When supported, del_tsk(): the underlying eCos thread must not be running -
54 n eCos Reference Manual eCos

µITRON API
this would imply either a bug or some program bypassing the µITRON
compatibility layer and manipulating the thread directly. E_OBJ

n sta_tsk(): the task must be dormant, else E_OBJ
n ter_tsk(): the task must not be dormant, else E_OBJ
n chg_pri(): the task must not be dormant, else E_OBJ
n rel_wai(): the task must be in WAIT or WAIT-SUSPEND state, else E_OBJ

Task-Dependent Synchronization
Functions

These functions are fully supported in this release:
ER sus_tsk(

ID tskid)
ER rsm_tsk(

ID tskid)
ER frsm_tsk(

ID tskid)
ER slp_tsk(void)
ER tslp_tsk(

TMO tmout)
ER wup_tsk(

ID tskid)
ER can_wup(

INT *p_wupcnt,
ID tskid)

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled (see “Option:
Return Error Codes for Bad Params”, in Section V):
n invalid tskid; less than 1 or greater than CYGNUM_UITRON_TASKS returns

E_ID
n wup_tsk(), sus_tsk(), rsm_tsk(), frsm_tsk() on the calling task returns

E_OBJ
n dispatching is enabled in tslp_tsk() and slp_tsk(), or E_CTX
n tmout must be positive, otherwise E_PAR
n return value pointer in can_wup() is a valid pointer, or E_PAR
The following conditions are checked for, and can return error codes, regardless of the
eCos eCos Reference Manual n 55

µITRON API
setting of CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:
n When create and delete functions cre_tsk() and del_tsk() are supported, all

calls which use a valid task ID number check that the task exists; if not,
E_NOEXS is returned

n sus_tsk(): the task must not be dormant, else E_OBJ
n frsm/rsm_tsk(): the task must be suspended, else E_OBJ
n tslp/slp_tsk(): return codes E_TMOUT, E_RLWAI and E_DLT are returned

depending on the reason for terminating the sleep
n wup_tsk() and can_wup(): the task must not be dormant, or E_OBJ is returned

Synchronization and Communication
Functions

These functions are fully supported in this release:
ER sig_sem(

 ID semid)
ER wai_sem(

 ID semid)
ER preq_sem(

 ID semid)
ER twai_sem(

 ID semid,
 TMO tmout)
ER ref_sem(

 T_RSEM *pk_rsem ,
 ID semid)
ER set_flg(

 ID flgid,
 UINT setptn)
ER clr_flg(

 ID flgid,
 UINT clrptn)
ER wai_flg(

 UINT *p_flgptn,
 ID flgid ,
 UINT waiptn ,
 UINT wfmode)
56 n eCos Reference Manual eCos

µITRON API
ER pol_flg(

 UINT *p_flgptn,
 ID flgid ,
 UINT waiptn ,
 UINT wfmode)
ER twai_flg(

 UINT *p_flgptn
 ID flgid ,
 UINT waiptn ,
 UINT wfmode,
 TMO tmout)
ER ref_flg(

 T_RFLG *pk_rflg,
 ID flgid)
ER snd_msg(

 ID mbxid,
 T_MSG *pk_msg)
ER rcv_msg(

 T_MSG **ppk_msg,
 ID mbxid)
ER prcv_msg(

 T_MSG **ppk_msg,
 ID mbxid)
ER trcv_msg(

 T_MSG **ppk_msg,
 ID mbxid ,
 TMO tmout)
ER ref_mbx(

 T_RMBX *pk_rmbx,
 ID mbxid)

The following functions are supported in this release (with some restrictions) if
enabled with the appropriate configuration option for the object type (for example
CYGPKG_UITRON_SEMAS_CREATE_DELETE) :

ER cre_sem(

 ID semid,
 T_CSEM *pk_csem)
ER del_sem(

 ID semid)
ER cre_flg(

 ID flgid,
eCos eCos Reference Manual n 57

µITRON API
 T_CFLG *pk_cflg)
ER del_flg(

 ID flgid)
ER cre_mbx(

 ID mbxid,
 T_CMBX *pk_cmbx)
ER del_mbx(

 ID mbxid)
In general the queueing order when waiting on a synchronization object depends on
the underlying kernel configuration. The multi-level queue scheduler is required for
strict µITRON conformance and it queues tasks in FIFO order, so requests to create an
object with priority queueing of tasks (pk_cxxx->xxxatr = TA_TPRI) are rejected
with E_RSATR. Additional undefined bits in the attributes fields must be zero.
In general, extended information (pk_cxxx->exinf) is ignored.
For semaphores, the initial semaphore count (pk_csem->isemcnt) is supported; the
new semaphore’s count is set. The maximum count is not supported, and is not in fact
defined in type pk_csem.
For flags, multiple tasks are allowed to wait. Because single task waiting is a subset of
this, the W bit (TA_WMUL) of the flag attributes is ignored; all other bits must be
zero. The initial flag value is supported.
For mailboxes, the buffer count is defined statically by kernel configuration option
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE; therefore the buffer count field
is not supported and is not in fact defined in type pk_cmbx. Queueing of messages is
FIFO ordered only, so TA_MPRI (in pk_cmbx->mbxatr) is not supported.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n invalid object id; less than 1 or greater than

CYGNUM_UITRON_TASKS/SEMAS/MBOXES as appropriate returns E_ID
n dispatching is enabled in any call which can sleep, or E_CTX
n tmout must be positive, otherwise E_PAR
n pk_cxxx pointers in cre_xxx() must be valid pointer, or E_PAR
n return value pointers in ref_xxx() is a valid pointer, or E_PAR
n flag wait pattern must be non-zero, and mode must be valid, or E_PAR
n return value pointer in flag wait calls is a valid pointer, or E_PAR
The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:
n When create and delete functions cre_xxx() and del_xxx() are supported, all
58 n eCos Reference Manual eCos

µITRON API
calls which use a valid object ID number check that the object exists. If not,
E_NOEXS is returned.

n In create functions cre_xxx(), when supported, if the object already exists, then
E_OBJ

n In any call which can sleep, such as twai_sem(): return codes E_TMOUT,
E_RLWAI, E_DLT or of course E_OK are returned depending on the reason for
terminating the sleep

n In polling functions such as preq_sem()return codes E_TMOUT or E_OK are
returned depending on the state of the synchronization object

n In creation functions, the attributes must be compatible with the selected
underlying kernel configuration: in cre_sem() pk_csem->sematr must be equal
to TA_TFIFO else E_RSATR.

n In cre_flg() pk_cflg->flgatr must be either TA_WMUL or TA_WSGL else
E_RSATR.

n In cre_mbx() pk_cmbx->mbxatr must be TA_TFIFO + TA_MFIFO else E_RSATR.

Extended Synchronization and
Communication Functions

None of these functions are supported in this release.

Interrupt management functions
These functions are fully supported in this release:

void ret_int(void)

ER loc_cpu(void)

ER unl_cpu(void)

ER dis_int(

 UINT eintno)
ER ena_int(

 UINT eintno)
voidret_wup(

 ID tskid)
ER iwup_tsk(

 ID tskid)
ER isig_sem(
eCos eCos Reference Manual n 59

µITRON API
 ID semid)
ER iset_flg(

 ID flgid ,
 UID setptn)
ER isend_msg(

 ID mbxid ,
 T_MSG *pk_msg)

Note that ret_int() and the ret_wup() are implemented as macros, containing a
“return” statement.
Also note thatret_wup() and the ixxx_yyy() style functions will only work when
called from an ISR whose associated DSR is cyg_uitron_dsr(), as specified in
include file <cyg/compat/uitron/uit_ifnc.h>, which defines the ixxx_yyy() style
functions also. Do not use them from a DSR: use plain ixxx_yyy() style functions
instead.
The following functions are not supported in this release:

ER def_int(

 UINT dintno,

T_DINT *pk_dint)
ER chg_iXX(

 UINT iXXXX)
ER ref_iXX(

 UINT * p_iXXXX)
These unsupported functions are all Level C (CPU dependent). Equivalent
functionality is available via other eCos-specific APIs.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n loc/unl_cpu(): these must only be called in a µITRON task context, else

E_CTX.
n dis/ena_int(): the interrupt number must be in range as specified by the

platform HAL in qustion, else E_PAR.

Memory pool Management Functions
These functions are fully supported in this release:

ER get_blf(

 VP *p_blf,
60 n eCos Reference Manual eCos

µITRON API
 ID mpfid)
ER pget_blf(

 VP *p_blf,
 ID mpfid)
ER tget_blf(

 VP *p_blf,
 ID mpfid,
 TMO tmout)
ER rel_blf(

 ID mpfid,
 VP blf)
ER ref_mpf(

 T_RMPF *pk_rmpf,
 ID mpfid)
ER get_blk(

 VP *p_blk,
 ID mplid,
 INT blksz)
ER pget_blk(

 VP *p_blk,
 ID mplid,
 INT blksz)
ER tget_blk(

 VP *p_blk,
 ID mplid,
 INT blksz,
 TMO tmout)
ER rel_blk(

 ID mplid,
 VP blk)
ER ref_mpl(

 T_RMPL *pk_rmpl,
 ID mplid)

Note that of the memory provided for a particular pool to manage in the static
initialization of the memory pool objects, some memory will be used to manage the
pool itself. Therefore the number of blocks * the blocksize will be less than the total
memory size.
The following functions are supported in this release, when enabled with
CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETE or
CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE as appropriate, with
eCos eCos Reference Manual n 61

µITRON API
some restrictions:
ER cre_mpl(

 ID mplid,
 T_CMPL *pk_cmpl)
ER del_mpl(

 ID mplid)
ER cre_mpf(

 ID mpfid,
 T_CMPF *pk_cmpf)
ER del_mpf(

 ID mpfid)
Because of the static initialization facilities provided for system objects, a memory
pool is allocated a region of memory to manage statically in the configuration. So
while memory pools can be created and deleted, the same area of memory is used for
that memory pool (memory pool ID number) each time. The requested variable pool
size (pk_cmpl->mplsz) or the number of fixed-size blocks (pk_cmpf->mpfcnt) times
the block size (pk_cmpf->blfsz) are checked for fitting within the statically allocated
memory area, so if a create call succeeds, the resulting pool will be at least as large as
that requested. For this reason del_mpl() and del_mpf() do not in any sense free the
memory that was managed by the deleted pool for use by other pools; it may only be
managed by a pool of the same object id.
For both fixed and variable memory pools, the queueing order when waiting on a
synchronization object depends on the underlying kernel configuration. The
multi-level queue scheduler is required for strict µITRON conformance and it queues
tasks in FIFO order, so requests to create an object with priority queueing of tasks
(pk_cxxx->xxxatr = TA_TPRI) are rejected with E_RSATR. Additional undefined
bits in the attributes fields must be zero.
In general, extended information (pk_cxxx->exinf) is ignored.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n invalid object id; less than 1 or greater than

CYGNUM_UITRON_MEMPOOLVAR/MEMPOOLFIXED as appropriate returns
E_ID

n dispatching is enabled in any call which can sleep, or E_CTX
n tmout must be positive, otherwise E_PAR
n pk_cxxx pointers in cre_xxx() must be valid pointer, or E_PAR
n return value pointers in ref_xxx() is a valid pointer, or E_PAR
62 n eCos Reference Manual eCos

µITRON API
n return value pointers in get block routines is a valid pointer, or E_PAR
n blocksize request in get variable block routines is greater than zero, or E_PAR
The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:
n When create and delete functions cre_xxx() and del_xxx() are supported, all

calls which use a valid object ID number check that the object exists. If not,
E_NOEXS is returned.

n When create functions cre_xxx() are supported, if the object already exists, then
E_OBJ

n In any call which can sleep, such as get_blk(): return codes E_TMOUT,
E_RLWAI, E_DLT or of course E_OK are returned depending on the reason for
terminating the sleep

n In polling functions such as pget_blk()return codes E_TMOUT or E_OK are
returned depending on the state of the synchronization object

n In creation functions, the attributes must be compatible with the selected
underlying kernel configuration: in cre_mpl() pk_cmpl->mplatr must be equal
to TA_TFIFO else E_RSATR.

n In cre_mpf() pk_cmpf->mpfatr must be equal to TA_TFIFO else E_RSATR.
n In creation functions, the requested size of the memory pool must not be larger

than that statically configured for the pool else E_RSATR; see “Option: Static
initializers”, in Section V. In cre_mpl() pk_cmpl->mplsz is the field of interest

n In cre_mpf() the product of pk_cmpf->blfsz and pk_cmpf->mpfcnt must be
smaller than the memory statically configured for the pool else E_RSATR

n In functions which return memory to the pool rel_blk() and rel_blf(), if the
free fails, for example because the memory did not come from that pool
originally, then E_PAR is returned

Time Management Functions
These functions are fully supported in this release:

ER set_tim(

 SYSTIME *pk_tim)

CAUTION Setting the time may cause erroneous operation of the kernel, for example a
task performing a wait with a time-out may never awaken.

ER get_tim(

 SYSTIME *pk_tim)
ER dly_tsk(
eCos eCos Reference Manual n 63

µITRON API
 DLYTIME dlytim)
ER def_cyc(

 HNO cycno,
 T_DCYC *pk_dcyc)
ER act_cyc(

 HNO cycno,
 UINT cycact)
ER ref_cyc(

 T_RCYC *pk_rcyc,
 HNO cycno)
ER def_alm(

 HNO almno,
 T_DALM *pk_dalm)
ER ref_alm(

 T_RALM *pk_ralm,
HNO almno)

void ret_tmr(void)
 Error checking

The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n invalid handler number; less than 1 or greater than

CYGNUM_UITRON_CYCLICS/ALARMS as appropriate, or E_PAR
n dispatching is enabled in dly_tsk(), or E_CTX
n dlytim must be positive or zero, otherwise E_PAR
n return value pointers in ref_xxx() is a valid pointer, or E_PAR
n params within pk_dalm and pk_dcyc must be valid, or E_PAR
n cycact in act_cyc() must be valid, or E_PAR
n handler must be defined in ref_xxx() and act_cyc(), or E_NOEXS
n parameter pointer must be a good pointer in get_tim() and set_tim(), otherwise

E_PAR is returned
The following conditions are checked for, and can return error codes, regardless of the
setting of CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:
n dly_tsk(): return code E_RLWAI is returned depending on the reason for

terminating the sleep

System Management Functions
These functions are fully supported in this release:
64 n eCos Reference Manual eCos

µITRON API
ER get_ver(

 T_VER *pk_ver)
ER ref_sys(

 T_RSYS *pk_rsys)
ER ref_cfg(

 T_RCFG *pk_rcfg)
Note that the information returned by each of these calls may be configured to match
the user’s own versioning system, and the values supplied by the default configuration
may be inappropriate.
These functions are not supported in this release:

ER def_svc(

 FN s_fncd,
 T_DSVC *pk_dsvc)
ER def_exc(

 UINT exckind,
 T_DEXC *pk_dexc)

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled:
n return value pointer in all calls is a valid pointer, or E_PAR

Network Support Functions
None of these functions are supported in this release.
eCos eCos Reference Manual n 65

The eCos Hardware Abstraction Layer (HAL)

The eCos Hardware Abstraction
Layer (HAL)

This is an initial specification of the eCos Hardware Abstraction Layer (HAL). The
HAL abstracts the underlying hardware of a processor architecture and/or the platform
to a level sufficient for the eCos kernel to be ported onto that platform.
Caveat This document is an informal description of the HAL capabilities and is not
intended to be full documentation, although it may be used as a source for such. It also
describes the HAL as it is currently implemented for the architectures targeted in this
release. Further work (described in “Future developments” on page 83), is needed to
complete it.

Architecture, implementation and
platform

We have identified three levels at which the HAL must operate. The architecture
HAL abstracts the basic CPU architecture and includes things like interrupt delivery,
context switching, CPU startup etc. The platform HAL abstracts the properties of the
current platform and includes things like platform startup, timer devices, I/O register
access and interrupt controllers. The implementation HAL abstracts properties that lie

7

66 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
between these two, such as architecture variants and on-chip devices. The boundaries
between these three HAL levels are necessarily blurred.
In the current HAL structure, there are separate directory trees for the architectural
and platform HALs. The implementation HAL is currently supported in one or other
of these by means of conditional compilation depending on how generic a particular
feature is expected to be. Thus processor variants are handled in the architectural HAL
since they are likely to be generic to several implementations. On-chip devices are
handled in the platform HAL, if they impact the kernel, or as proper device drivers
(and are thus outside the HAL).
The one area where there is significant interaction between these HAL layers is in the
interrupt delivery VSR. Here the VSR, which is in the architectural HAL, may need to
interrogate an interrupt controller to dispatch the correct ISR. The interrupt controller
may be defined by the platform or implementation HAL. This is normally only a few
instructions so is currently handled by conditional compilation. If this proves to
become unwieldy, a mechanism for including platform code in the architectural HAL
may be needed.

General principles
The HAL has been implemented according to the following general principles:

1. The HAL is implemented in C and assembler, although the eCos kernel is largely
implemented in C++. This is to permit the HAL the widest possible applicability.

2. All interfaces to the HAL are implemented by CPP macros. This allows them to
be implemented as inline C code, inline assembler or function calls to external C
or assembler code. This allows the most efficient implementation to be selected
without affecting the interface. It also allows them to be redefined if the platform
HAL needs to replace or enhance a definition from the architecture HAL.

3. The HAL provides simple, portable mechanisms for dealing with the hardware of
a wide range of architectures and platforms. It is always possible to bypass the
HAL and program the hardware directly, but this may lead to a loss of portability.

Architectural HAL files
hal/ARCH/arch/v1_3_x/include/basetype.h

This file defines the properties of the base architecture that are used to compile the
portable parts of the kernel. It is included automatically by cyg/infra/cyg_type.h.
The following definitions may be included.
eCos eCos Reference Manual n 67

The eCos Hardware Abstraction Layer (HAL)
Byte order
CYG_BYTEORDER

This defines the byte order of the target and must be set to either CYG_LSBFIRST or
CYG_MSBFIRST.

Label translation
CYG_LABEL_NAME(name)

This is a wrapper used in some C and C++ files which specify labels defined in
assembly code or the linker script. It need only be defined if the default
implementation in cyg/kernel/ktypes.h, which passes the name argument
unaltered, is inadequate. The most usual alternative definition of this macro
prepends an underscore to the label name. This depends on the labeling
convention of the tool set.

Base types
cyg_halint8
cyg_halint16
cyg_halint32
cyg_halint64
cyg_halcount8
cyg_halcount16
cyg_halcount32
cyg_halcount64
cyg_halbool

These macros define the C base types that should be used to define variables of the
given size. They only need to be defined if the default types specified in
cyg/infra/cyg_type.h cannot be used. Note that these are only the base types, they
will be composed with signed and unsigned to form full type specifications.

Atomic types
cyg_halatomic
CYG_ATOMIC

These types are guaranteed to be read or written in a single uninterruptible operation.
It is architecture defined what size this type is, but it will be at least a byte.

hal/ARCH/arch/v1_3_x/include/hal_arch.h
This file contains definitions that are related to the basic architecture of the CPU.

Register save format
typedef struct HAL_SavedRegisters
{
/* architecture-dependent list of registers to be saved */
68 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
} HAL_SavedRegisters;

This structure describes the layout of a saved machine state on the stack. Such states
are saved during thread context switches, interrupts and exceptions. Different
quantities of state may be saved during each of these, but usually a thread context state
is a subset of the interrupt state which is itself a subset of an exception state. Where
these states are significantly different, this structure should contain a union of the
three states.

Thread context initialization
HAL_THREAD_INIT_CONTEXT(sp, arg, entry, id)

This macro initializes a thread’s context so that it may be switched to by
HAL_THREAD_SWITCH_CONTEXT(). The arguments are:

sp

A location containing the current value of the thread’s stack pointer. This should
be a variable or a structure field. The SP value will be read out of here and an
adjusted value written back.

arg

A value that is passed as the first argument to the entry point function.

entry

The address of an entry point function. This will be called according the C calling
conventions, and the value of arg will be passed as the first argument.

id

A thread id value. This is only used for debugging purposes, it is ORed into the
initialization pattern for unused registers and may be used to help identify the
thread from its register dump. The least significant 16 bits of this value should be
zero to allow space for a register identifier.

Thread context switching
HAL_THREAD_SWITCH_CONTEXT(from, to)

This macro implements the thread switch code. The arguments are:

from

A pointer to a location where the stack pointer of the current thread will be stored.

to

A pointer to a location from where the stack pointer of the next thread will be
read.

The state of the current thread is saved onto its stack, using the current value of the
stack pointer, and the address of the saved state placed in *from. The value in *to is
then read and the state of the new thread is loaded from it.
eCos eCos Reference Manual n 69

The eCos Hardware Abstraction Layer (HAL)
Note that interrupts are not disabled during this process, any interrupts that occur will
be delivered onto the stack to which the current value of the CPU stack pointer points.
Hence the stack pointer should never be invalid, or loaded with a value that might
cause the saved state to become corrupted by an interrupt.

Bit indexing
HAL_LSBIT_INDEX(index, mask)
HAL_MSBIT_INDEX(index, mask)

These macros place in index the bit index of the least(most) significant bit in mask.
Some architectures have instruction level support for one or other of these operations.
If no architectural support is available, then these macros may call C functions to do
the job.

Idle thread activity
HAL_IDLE_THREAD_ACTION(count)

It may be necessary under some circumstances for the HAL to execute code in the
kernel idle thread’s loop. An example might be to execute a processor halt instruction.
This macro provides a portable way of doing this. The argument is a copy of the idle
thread’s loop counter, and may be used to trigger actions at longer intervals than every
loop.

Reorder barrier
HAL_REORDER_BARRIER()

When optimizing the compiler can reorder code. In some parts of multi-threaded
systems, where the order of actions is vital, this can sometimes cause problems. This
macro may be inserted into places where reordering should not happen and prevents
code being migrated across it by the compiler optimizer. It should be placed between
statements that must be executed in the order written in the code.

Breakpoint support
HAL_BREAKPOINT(label)
HAL_BREAKINST
HAL_BREAKINST_SIZE

These macros provide support for breakpoints.
HAL_BREAKPOINT() executes a breakpoint instruction. The label is defined at the
breakpoint instruction so that exception code can detect which breakpoint was
executed.
HAL_BREAKINST contains the breakpoint instruction code as an integer value.
HAL_BREAKINST_SIZE is the size of that breakpoint instruction in bytes. Together
these may be used to place a breakpoint in any code.
70 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
GDB support
HAL_THREAD_GET_SAVED_REGISTERS(sp, regs)
HAL_GET_GDB_REGISTERS(regval, regs)
HAL_SET_GDB_REGISTERS(regs, regval)

These macros provide support for interfacing GDB to the HAL.
HAL_THREAD_GET_SAVED_REGISTERS() extracts a pointer to a
HAL_SavedRegisters structure from a stack pointer value. The stack pointer
passed in should be the value saved by the thread context macros. The macro will
assign a pointer to the HAL_SavedRegisters structure to the variable passed as
the second argument.
HAL_GET_GDB_REGISTERS() translates a register state as saved by the HAL and into a
register dump in the format expected by GDB. It takes a pointer to a
HAL_SavedRegisters structure in the regs argument and a pointer to the
memory to contain the GDB register dump in the regval argument.
HAL_SET_GDB_REGISTERS() translates a GDB format register dump into a the format
expected by the HAL. It takes a pointer to the memory containing the GDB register
dump in the regval argument and a pointer to a HAL_SavedRegisters structure
in the regs argument.

Setjmp and longjmp support
CYGARC_JMP_BUF_SIZE
hal_jmp_buf[CYGARC_JMP_BUF_SIZE]
hal_setjmp(hal_jmp_buf env)
hal_longjmp(hal_jmp_buf env, int val)

These functions provide support for the C setjmp() and longjmp() functions. Refer
to the C library for further information.

hal/ARCH/arch/v1_3_x/include/hal_intr.h

This file contains definitions related to interrupt handling.

Vector numbers
CYGNUM_HAL_VECTOR_XXX
CYGNUM_HAL_VSR_MIN
CYGNUM_HAL_VSR_MAX
CYGNUM_HAL_ISR_MIN
CYGNUM_HAL_ISR_MAX
CYGNUM_HAL_EXCEPTION_MIN
CYGNUM_HAL_EXCEPTION_MAX
CYGNUM_HAL_ISR_COUNT
CYGNUM_HAL_VSR_COUNT
CYGNUM_HAL_EXCEPTION_COUNT

All possible interrupt and exception vectors should be specified here, together with
eCos eCos Reference Manual n 71

The eCos Hardware Abstraction Layer (HAL)
maximum and minimum values for range checking.
There are two ranges of numbers, those for the vector service routines and those for
the interrupt service routines. The relationship between these two ranges is undefined,
and no equivalence should be assumed if vectors from the two ranges coincide.
The VSR vectors correspond to the set of exception vectors that can be delivered by
the CPU architecture, many of these will be internal exception traps. The ISR vectors
correspond to the set of external interrupts that can be delivered and are usually
determined by extra decoding of an interrupt controller by the interrupt VSR.
Where a CPU supports synchronous exceptions, the range of such exceptions allowed
are defined by CYGNUM_HAL_EXCEPTION_MIN and
CYGNUM_HAL_EXCEPTION_MAX. The actual exception numbers will normally
correspond to the VSR exception range. In future other exceptions generated by the
system software (such as stack overflow) may be added.
CYGNUM_HAL_ISR_COUNT, CYGNUM_HAL_VSR_COUNT and
CYGNUM_HAL_EXCEPTION_COUNT define the number of ISRs, VSRs and
EXCEPTIONs respectively for the purposes of defining arrays etc. There might be a
translation from the supplied vector numbers into array offsets. Hence
CYGNUM_HAL_XXX_COUNT may not simply be CYGNUM_HAL_XXX_MAX -
CYGNUM_HAL_XXX_MIN or CYGNUM_HAL_XXX_MAX+1.

Interrupt state control
HAL_DISABLE_INTERRUPTS(old)
HAL_RESTORE_INTERRUPTS(old)
HAL_ENABLE_INTERRUPTS()
HAL_QUERY_INTERRUPTS(state)

These macros provide control over the state of the CPUs interrupt mask mechanism.
They should normally manipulate a CPU status register to enable and disable interrupt
delivery. They should not access an interrupt controller.
HAL_DISABLE_INTERRUPTS() disables the delivery of interrupts and stores the original
state of the interrupt mask in the variable passed in the old argument.
HAL_RESTORE_INTERRUPTS() restores the state of the interrupt mask to that recorded
in old.
HAL_ENABLE_INTERRUPTS() simply enables interrupts regardless of the current state
of the mask.
HAL_QUERY_INTERRUPTS() stores the state of the interrupt mask in the variable passed
in the state argument.
It is at the HAL implementer’s discretion exactly which interrupts are masked by this
mechanism. Where a CPU has more than one interrupt type that may be masked
separately (e.g. the ARM's IRQ and FIQ) only those that can raise DSRs need to be
masked here. A separate architecture specific mechanism may then be used to control
72 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
the other interrupt types.

ISR and VSR management
HAL_INTERRUPT_ATTACH(vector, isr, data, object)
HAL_INTERRUPT_DETACH(vector, isr)
HAL_VSR_SET(vector, vsr, poldvsr)
HAL_VSR_GET(vector, pvsr)

These macros manage the attachment of interrupt and vector service routines to
interrupt and exception vectors respectively.
HAL_INTERRUPT_ATTACH() attaches the ISR, data pointer and object pointer to the
given vector. When an interrupt occurs on this vector the ISR is called using the C
calling convention and the vector number and data pointer are passed to it as the first
and second arguments respectively.
HAL_INTERRUPT_DETACH() detaches the ISR from the vector.
HAL_VSR_SET() replaces the VSR attached to the vector with the replacement
supplied in vsr. The old VSR is returned in the location pointed to by pvsr.
HAL_VSR_GET() assigns a copy of the VSR to the location pointed to by pvsr.

Interrupt controller management
HAL_INTERRUPT_MASK(vector)
HAL_INTERRUPT_UNMASK(vector)
HAL_INTERRUPT_ACKNOWLEDGE(vector)
HAL_INTERRUPT_CONFIGURE(vector, level, up)
HAL_INTERRUPT_SET_LEVEL(vector, level)

These macros exert control over any prioritized interrupt controller that is present. If
no priority controller exists, then these macros should be empty.
HAL_INTERRUPT_MASK() causes the interrupt associated with the given vector to be
blocked.
HAL_INTERRUPT_UNMASK() causes the interrupt associated with the given vector to be
unblocked.
HAL_INTERRUPT_ACKNOWLEDGE() acknowledges the current interrupt from the given
vector. This is usually executed from the ISR for this vector when it is prepared to
allow further interrupts. Most interrupt controllers need some form of acknowledge
action before the next interrupt is allowed through. Executing this macro may cause
another interrupt to be delivered. Whether this interrupts the current code depends on
the state of the CPU interrupt mask.
HAL_INTERRUPT_CONFIGURE() provides control over how an interrupt signal is
detected. The arguments are:

vector

The interrupt to be configured.
eCos eCos Reference Manual n 73

The eCos Hardware Abstraction Layer (HAL)
level

Set to true if the interrupt is detected by level, and false if it is edge triggered.

up

If the interrupt is set to level detect, then if this is true it is detected by a high
signal level, and if false by a low signal level. If the interrupt is set to edge
triggered, then if this is true it is triggered by a rising edge and if false by a
falling edge.

HAL_INTERRUPT_SET_LEVEL() provides control over the hardware priority of the
interrupt. The arguments are:

vector

The interrupt whose level is to be set.

level

The priority level to which the interrupt is to set. In some architectures the set
interrupt level is also used as an interrupt enable/disable. Hence this function and
HAL_INTERRUPT_MASK() and HAL_INTERRUPT_UNMASK() may interfere with each
other.

Clock control
HAL_CLOCK_INITIALIZE(period)
HAL_CLOCK_RESET(vector, period)
HAL_CLOCK_READ(pvalue)

These macros provide control over a clock or timer device that may be used by the
kernel to provide time-out, delay and scheduling services. The clock is assumed to be
implemented by some form of counter that is incremented or decremented by some
external source and which raises an interrupt when it reaches zero.
HAL_CLOCK_INITIALIZE() initializes the clock device to interrupt at the given period.
The period is essentially the value used to initialize the clock counter and must be
calculated from the clock frequency and the desired interrupt rate.
HAL_CLOCK_RESET() re-initializes the clock to provoke the next interrupt. This macro
is only really necessary when the clock device needs to be reset in some way after
each interrupt.
HAL_CLOCK_READ() reads the current value of the clock counter and puts the value in
the location pointed to by pvalue. The value stored will always be the number of
clock ‘‘ticks’’ since the last interrupt, and hence ranges between zero and the initial
period value.

hal/ARCH/arch/v1_3_x/include/hal_io.h

This file contains definitions for supporting access to device control registers in an
architecture neutral fashion.
74 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
Register address
HAL_IO_REGISTER

This type is used to store the address of an I/O register. It will normally be a memory
address, an integer port address or an offset into an I/O space. More complex
architectures may need to code an address space plus offset pair into a single word, or
may represent it as a structure.
Values of variables and constants of this type will usually be supplied by
configuration mechanisms.

Register read
HAL_READ_XXX(register, value)
HAL_READ_XXX_VECTOR(register, buffer, count, stride)

These macros support the reading of I/O registers in various sizes. The XXX
component of the name may be UINT8, UINT16, UINT32.
HAL_READ_XXX() reads the appropriately sized value from the register and stores it in
the variable passed as the second argument.
HAL_READ_XXX_VECTOR() reads count values of the appropriate size into buffer.
The stride controls how the pointer advances through the register space. A stride of
zero will read the same register repeatedly, and a stride of one will read adjacent
registers of the given size. Greater strides will step by larger amounts, to allow for
sparsely mapped registers for example.

Register write
HAL_WRITE_XXX(register, value)
HAL_WRITE_XXX_VECTOR(register, buffer, count, stride)

These macros support the writing of I/O registers in various sizes. The XXX component
of the name may be UINT8, UINT16, UINT32.
HAL_WRITE_XXX() writes the appropriately sized value from the variable passed as the
second argument stored it in the register.
HAL_WRITE_XXX_VECTOR() writes count values of the appropriate size from
buffer. The stride controls how the pointer advances through the register space.
A stride of zero will write the same register repeatedly, and a stride of one will write
adjacent registers of the given size. Greater strides will step by larger amounts, to
allow for sparsely mapped registers for example.

hal/ARCH/arch/v1_3_x/include/hal_cache.h

This file contains definitions for supporting control of the caches on the CPU.
There are versions of the macros defined here for both the Data and Instruction
caches. these are distinguished by the use of either DCACHE or ICACHE in the
macro names. In the following descriptions, XCACHE is also used to stand for either
eCos eCos Reference Manual n 75

The eCos Hardware Abstraction Layer (HAL)
of these. Where there are issues specific to a particular cache, this will be explained in
the text.
There might be restrictions on the use of some of the macros which it is the user’s
responsibility to comply with. Such restrictions are documented in the hal_cache.h
file.
Note that destructive cache macros should be used with caution. Preceding a cache
invalidation with a cache synchronization is not safe in itself since an interrupt may
happen after the synchronization but before the invalidation. This might cause the
state of dirty data lines created during the interrupt to be lost.
Depending on the architecture’s capabilities, it may be possible to temporarily disable
the cache while doing the synchronization and invalidation which solves the problem
(no new data would be cached during an interrupt). Otherwise it is necessary to
disable interrupts while manipulating the cache which may take a long time.
Some platform HALs now support a pair of cache state query macros:
HAL_ICACHE_IS_ENABLED(x) and HAL_DCACHE_IS_ENABLED(x) which set the
argument to true if the instruction or data cache is enabled, respectively. Like most
cache control macros, these are optional, because the capabilities of different targets
and boards can vary considerably. Code which uses them, if it is to be considered
portable, should test for their existence first by means of #ifdef. Be sure to include
<cyg/hal/hal_cache.h> in order to do this test and (maybe) use the macros.

Cache dimensions
HAL_XCACHE_SIZE
HAL_XCACHE_LINE_SIZE
HAL_XCACHE_WAYS
HAL_XCACHE_SETS

These macros define the size and dimensions of the Instruction and Data caches.

HAL_XCACHE_SIZE

gives the total size of the cache in bytes.

HAL_XCACHE_LINE_SIZE

gives the cache line size in bytes.

HAL_XCACHE_WAYS

gives the number of ways in each set and defines its level of associativity. This
would be 1 for a direct mapped cache.

HAL_XCACHE_SETS

gives the number of sets in the cache, and is derived from the previous values.

Global cache control
HAL_XCACHE_ENABLE()
76 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
HAL_XCACHE_DISABLE()
HAL_XCACHE_INVALIDATE_ALL()
HAL_XCACHE_SYNC()
HAL_XCACHE_BURST_SIZE(size)
HAL_DCACHE_WRITE_MODE(mode)
HAL_XCACHE_LOCK(base, size)
HAL_XCACHE_UNLOCK(base, size)
HAL_XCACHE_UNLOCK_ALL()

These macros affect the state of the entire cache, or a large part of it.

HAL_XCACHE_ENABLE() and HAL_XCACHE_DISABLE()

enable and disable the cache.

HAL_XCACHE_INVALIDATE_ALL()

causes the entire contents of the cache to be invalidated. Depending on the
hardware, this may require the cache to be disabled during the invalidation
process. If so, the implementation must use HAL_XCACHE_IS_ENABLED to
save and restore the previous state.

HAL_XCACHE_SYNC()

causes the contents of the cache to be brought into synchronization with the
contents of memory. In some implementations this may be equivalent to
HAL_XCACHE_INVALIDATE_ALL().

HAL_XCACHE_BURST_SIZE()

allows the size of cache to/from memory bursts to be controlled. This macro will
only be defined if this functionality is available.

HAL_DCACHE_WRITE_MODE()

controls the way in which data cache lines are written back to memory. There will
be definitions for the possible modes. Typical definitions are
HAL_DCACHE_WRITEBACK_MODE and
HAL_DCACHE_WRITETHRU_MODE. This macro will only be defined if this
functionality is available.

HAL_XCACHE_LOCK()

causes data to be locked into the cache. The base and size arguments define the
memory region that will be locked into the cache. It is architecture dependent
whether more than one locked region is allowed at any one time, and whether this
operation causes the cache to cease acting as a cache for addresses outside the
region during the duration of the lock. This macro will only be defined if this
functionality is available.

HAL_XCACHE_UNLOCK()

cancels the locking of the memory region given. This should normally correspond
eCos eCos Reference Manual n 77

The eCos Hardware Abstraction Layer (HAL)
to a region supplied in a matching lock call. This macro will only be defined if this
functionality is available.

HAL_XCACHE_UNLOCK_ALL()

cancels all existing locked memory regions. This may be required as part of the
cache initialization on some architectures. This macro will only be defined if this
functionality is available.

Cache line control
HAL_DCACHE_ALLOCATE(base , size)
HAL_DCACHE_FLUSH(base , size)
HAL_XCACHE_INVALIDATE(base , size)
HAL_DCACHE_STORE(base , size)
HAL_DCACHE_READ_HINT(base , size)
HAL_DCACHE_WRITE_HINT(base , size)
HAL_DCACHE_ZERO(base , size)

All of these macros apply a cache operation to all cache lines that match the memory
address region defined by the base and size arguments. These macros will only be
defined if the described functionality is available. Also, it is not guaranteed that the
cache function will only be applied to just the described regions, in some architectures
it may be applied to the whole cache.

HAL_DCACHE_ALLOCATE()

allocates lines in the cache for the given region without reading their contents
from memory, hence the contents of the lines is undefined. This is useful for
preallocating lines which are to be completely overwritten, for example in a block
copy operation.

HAL_DCACHE_FLUSH()

invalidates all cache lines in the region after writing any dirty lines to memory.

HAL_XCACHE_INVALIDATE()

invalidates all cache lines in the region. Any dirty lines are invalidated without
being written to memory.

HAL_DCACHE_STORE()

writes all dirty lines in the region to memory, but does not invalidate any lines.

HAL_DCACHE_READ_HINT()

hints to the cache that the region is going to be read from in the near future. This
may cause the region to be speculatively read into the cache.

HAL_DCACHE_WRITE_HINT()

hints to the cache that the region is going to be written to in the near future. This
may have the identical behavior to HAL_DCACHE_READ_HINT().
78 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
HAL_DCACHE_ZERO()

allocates and zeroes lines in the cache for the given region without reading
memory. This is useful if a large area of memory is to be cleared.

hal/ARCH/arch/v1_3_x/src/ARCH.ld

This is the architecture specific linker script file. It defines the section types required
for the architecture. During preprocessing, the memory layout specified for the chosen
platform and startup type is included, defining region, alignment and location
parameters for the sections.

hal/ARCH/arch/v1_3_x/src/vectors.S

This file contains code to deal with exception and interrupt vectors. Since the reset
entry point is usually implemented as one of these it also deals with system startup.
The exact implementation of this code is under the control of the HAL implementer.
So long as it interacts correctly with the macros defined in hal_intr.h it may take
any form. However, all current implementation follow the same pattern, and there
should be a very good reason to break with this. The rest of this section describes how
the standard HAL implementation operates.
This file usually contains the following sections of code:
n Startup and initialization code.
n Exception delivery.
n Default handling of synchronous exception.
n Default handling of interrupts.

HAL startup
Execution normally begins at the reset vector with the machine in a minimal startup
state.
The following is a list of the jobs that need to be done in approximately the order in
which they should be accomplished. Many of these will not be needed in some
configurations.
n Initialize various CPU status registers. Most importantly, the CPU interrupt mask

should be set to disable interrupts.
n Set up any CPU memory controller to access RAM, ROM and I/O devices

correctly. Until this is done it may not be possible to access RAM.
n Enable the cache, if it is to be used. This may require enabling the CPU’s memory

management system since that is often the only way of controlling the
cacheability of memory. If this is necessary, a direct one-to-one mapping between
physical and virtual memory is most desirable.

n Set up the stack pointer, this allows subsequent initialization code to make
procedure calls.
eCos eCos Reference Manual n 79

The eCos Hardware Abstraction Layer (HAL)
n Initialize any global pointer register needed for access to globally defined
variables. This allows subsequent initialization code to access global variables.

n Perform any platform specific initialization. This is best accomplished by calling
an initialization routine in PLATFORM.S (see
“hal/ARCH/PLATFORM/v1_3_x/src/PLATFORM.S” on page 83).

n If the system is starting from ROM, copy the ROM template of the .data section
out to its correct position in RAM. (See
“hal/ARCH/arch/v1_3_x/src/ARCH.ld” on page 79).

n Zero the BSS section.
n Create a suitable C call stack frame.
n Call cyg_hal_invoke_constructors() to run any static constructors.
n Call cyg_start(). If cyg_start() returns, drop into an infinite loop.

Vectors and VSRs
The CPU delivers all exceptions whether synchronous or interrupts to a set of vectors.
Depending on the architecture, these may be implemented in a number of different
ways. Examples of existing mechanisms are:

PowerPC

Exceptions are vectored to locations 256 bytes apart starting at either zero or
0xFFF00000. There are 16 such vectors defined by the architecture and extra
vectors may be defined by specific implementations.

MIPS

All exceptions are vectored to a single address and software is responsible for
reading the exception code from a CPU register to discover its true source.

MN10300

External interrupts are vectored to an address stored in one of seven interrupt
vector registers. These only supply the lower 16 bits of the address, the upper 16
bits are fixed to 0x4000XXXX. Hence the service routine is constrained to the 64k
range starting at 0x40000000.

Pentium

Exceptions are delivered via an Interrupt Descriptor Table (IDT) which is
essentially an indirection table indexed by exception type. The IDT may be placed
anywhere in memory. In PC hardware the interrupt controller can be programmed
to deliver the external interrupts to a block of 16 vectors at any offset in the IDT.

680X0

Exceptions are delivered via an indirection table described by a CPU base register
(for X > 0). External interrupts are either delivered via a set of level-specific
80 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
vectors defined by the architecture, or a vector number may be supplied by the
device in which case another entry in the table may be used.

The model adopted by the HAL is that VSRs should be easily replaceable with a
pointer to an alternative routine. Of the above architectures, only the Pentium and
680X0 allow this directly in the hardware. In the other three, extra software is
required. The code attached directly to the vector is a short trampoline that indirects
by way of a HAL supplied VSR table to the true VSR. In the PowerPC and MN10300
the table offset is implicit in the vector routine called, for the MIPS the code reads the
cause register and indirects through the appropriate table entry.

Default exception handling
Most synchronous exception vectors will point to a default exception VSR which is
responsible for handling all exceptions in a generic manner.
Since most exceptions handled by this VSR are errors (or breakpoints when a program
is being debugged), its default behavior should be to save the entire machine state,
disable interrupts, and invoke the debugger’s entry point, passing it a pointer to the
saved state.
If the debugger returns then the saved state is restored and the interrupted code
resumed. Since the debugger may adjust the saved state while it runs a little care must
be taken to restore the state correctly.

Default interrupt handling
Most external interrupt vectors will point to a default interrupt VSR which decode the
actual interrupt being delivered and invokes the appropriate ISR.
The default interrupt VSR has a number of responsibilities if it is going to interact
with the Kernel cleanly and allow interrupts to cause thread preemption.
To support this VSR an ISR vector table is needed. For each valid vector three
pointers need to be stored: the ISR, its data pointer and an interrupt object pointer
needed by the kernel. It is implementation defined whether these are stored in a single
table of triples, or in three separate tables.
The VSR should follow the following approximate plan:
n Save the CPU state. In non-debug configurations, it may be possible to get away

with saving less than the entire machine state.
n Increment the kernel scheduler lock. This is a static member of the

Cyg_Scheduler class. It may be necessary to look at a objdump or assembler
listing of sched.cxx to discover its mangled label.

n (Optional) Switch to an interrupt stack if not already running on it. This allows
nested interrupts to be delivered without needing every thread to have a stack
large enough to take the maximum possible nesting. It is implementation defined
eCos eCos Reference Manual n 81

The eCos Hardware Abstraction Layer (HAL)
how to detect whether this is a nested interrupt.
n (Optional) Re-enable interrupts to permit nesting.
n Decode the actual external interrupt being delivered from the interrupt controller.

This will yield the ISR vector number.
n Using the ISR vector number as an index, retrieve the ISR pointer and its data

pointer from the ISR vector table.
n Construct a C call stack frame.
n Call the ISR, passing the vector number and data pointer. The vector number and

a pointer to the saved state should be preserved across this call, preferably by
storing them in registers that are defined to be callee-saved by the calling
conventions.

n If this is an un-nested interrupt and a separate interrupt stack is being used, switch
back to the interrupted thread’s own stack.

n (Optional) If interrupts were not enabled above, enable them here since the
interrupt_end() function must be called with interrupts enabled.

n Use the saved ISR vector number to get the interrupt object pointer from the ISR
vector table.

n Call interrupt_end() passing it the return value from the ISR, the interrupt
object pointer and a pointer to the saved CPU state. This function is implemented
by the Kernel and is responsible for finishing off the interrupt handling.
Specifically, it may post a DSR depending on the ISR return value, and will
decrement the scheduler lock. If the lock is zeroed by this then it may result in a
thread context switch.

n When interrupt_end() returns, restore the machine state and resume execution
of the interrupted thread. Depending on the architecture, it may be necessary to
disable interrupts again for part of this.

The detailed order of these steps may vary slightly depending on the architecture, in
particular where interrupts are enabled and disabled.

hal/ARCH/arch/v1_3_x/src/hal_misc.c

This file contains any miscellaneous functions that are reference by the HAL. Typical
functions that might go here are C implementations of the least- and most- significant
bit index routines, constructor calling functions such as
cyg_hal_invoke_constructors() and support routines for the exception and
interrupt vector handling.

hal/ARCH/PLATFORM/v1_3_x/include/pkgconf/STARTUP.mlt

For each startup type (STARTUP) the memory layout of the sections is defined. This
information may be edited using the Configuration Tool only.
82 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
hal/ARCH/PLATFORM/v1_3_x/include/pkgconf/STARTUP.ldi

For each startup type (STARTUP) the memory layout of the sections is exported by
the Configuration Tool as a linker script fragment suitable for inclusion within the
architecture-specific linker script file during preprocessing. The linker script fragment
to be included is specified by the CYGHWR_MEMORY_LAYOUT_LDI macro in
the system.h header file. The linker script fragments will be overwritten by the
Configuration Tool and should only edited manually where the Configuration Tool
is not in use.

hal/ARCH/PLATFORM/v1_3_x/include/hal_diag.h

During early development it is useful to have the ability to output messages to some
default destination. This may be a memory buffer, a simulator supported output
channel, a ROM emulator virtual UART or a serial line. This file defines set of macros
that provide simple, polled output for this purpose.
HAL_DIAG_INIT() performs any initialization required on the device being used to
generate diagnostic output. This may include setting baud rate, and stop, parity and
character bits.
HAL_DIAG_WRITE_CHAR(c) writes the character supplied to the diagnostic output
device.
These macros may either implement the required functionality directly, or may call
functions elsewhere in the HAL to do it. In the latter case these should be in the file
hal/ARCH/PLATFORM/v1_3_x/src/hal_diag.c.

hal/ARCH/PLATFORM/v1_3_x/src/PLATFORM.S

This is a platform specific assembly code file. Its main purpose is to contain any
platform specific startup code called from vectors.S.

hal/ARCH/PLATFORM/v1_3_x/src/context.S

If present, this is an assembly code file that contains the code to support thread
contexts. The routines to switch between various contexts, as well as initialize a thread
context may be present in this file.

hal/ARCH/PLATFORM/v1_3_x/src/hal_diag.c

If present, this file contains the implementation of the HAL diagnostic support
routines.

Future developments
The HAL is not complete, and will evolve and increase over time. Among the
intended developments are:
n Common macros for interpreting the contents of a saved machine context. These

would allow portable code, such as debug stubs, to extract such values as the
eCos eCos Reference Manual n 83

The eCos Hardware Abstraction Layer (HAL)
program counter and stack pointer from a state without having to interpret a
HAL_SavedRegisters structure directly.

n Debugging support. Macros to set and clear hardware and software breakpoints.
Access to other areas of machine state may also be supported.

n Floating point support. The saving and restoring of floating point state may need
to added to the HAL for those architectures that support it. The exact mechanisms
provided need to be defined.

n Static initialization support. The current HAL provides a dynamic interface to
things like thread context initialization and ISR attachment. We also need to be
able to define the system entirely statically so that it is ready to go on restart,
without needing to run code. This will require extra macros to define these
initializations. Such support may have a consequential effect on the current HAL
specification.

n CPU state control. Many CPUs have both kernel and user states. Although it is not
intended to run any code in user state for the foreseeable future, it is possible that
this may happen eventually. If this is the case, then some minor changes may be
needed to the current HAL API to accommodate this. These should mostly be
extensions, but minor changes in semantics may also be required.

n Physical memory management. Many embedded systems have multiple memory
areas with varying properties such as base address, size, speed, bus width,
cacheability and persistence. An API is needed to support the discovery of this
information about the machine’s physical memory map.

n Memory management control. Some embedded processors have a memory
management unit. In some cases this must be enabled to allow the cache to be
controlled, particularly if different regions of memory must have different caching
properties. For some purposes, in some systems, it will be useful to manipulate the
MMU settings dynamically.

n Power management. Macros to access and control any power management
mechanisms available on the CPU implementation. These would provide a
substrate for a more general power management system that also involved device
drivers and other hardware components.

n Generic serial line macros. Most serial line devices operate in the same way, the
only real differences being exactly which bits in which registers perform the
standard functions. It should be possible to develop a set of HAL macros that
provide basic serial line services such as baud rate setting, enabling interrupts,
polling for transmit or receive ready, transmitting and receiving data etc. Given
these it should be possible to create a generic serial line device driver that will
allow rapid bootstrapping on any new platform. It may be possible to extend this
mechanism to other device types.
84 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
n Porting Guide. As the HAL develops it will become important to perform a port to
a new architecture in the correct way.

Kernel porting notes
This section briefly describes the issues involved in porting eCos to a new target
platform and/or architecture.

Porting overview
The effort required to port eCos to a new target varies. Adding support for a new
platform/board may require almost no effort, while adding support for a new
architecture is more demanding. Additionally, new device drivers may have to be
written if there is no existing support for the target’s devices.
Given that there are usually more target platforms using the same microprocessor or
microcontroller, adding eCos support for a new target would often be a question of
adding support for the new target platform. The architectures supported by eCos
include the following: ARM7, MIPS (TX39), MN10300, PowerPC (MPC8xx), and
SPARClite.
Adding a new architecture support is a bigger job and also requires tool support
(GCC, GDB and binutils) which is a big undertaking in itself.

Platform support
Adding support for a new platform requires (a subset of):

1. Adding eCos configuration information.

2. Memory layout description.

3. Memory controller initialization.

4. Interrupt controller handling.

5. Minimal serial device driver for GDB interaction and simple diagnostics output.

6. System timer initialization and control.

7. Wallclock driver.

A wallclock emulation based on the system timer is provided with the standard
eCos distribution. For those hardware platforms where a battery backed-up clock
device or other means of determining actual wallclock time exists, a wallclock
driver may be implemented more fully.

If the architecture in question is a microcontroller (as opposed to a microprocessor),
the job of porting may be as simple as adding configuration information and defining
a new memory layout (items one and two). Currently eCos supports the following
eCos eCos Reference Manual n 85

The eCos Hardware Abstraction Layer (HAL)
microcontrollers: MN10300, MPC8xx, and TX39.

Architectural support
Adding support for a new architecture requires:

1. Adding eCos configuration information.

2. Writing a HAL for the CPU core’s register model, interrupt and exception model,
cache model, and possibly simple handling for the MMU model.

3. For microcontrollers the HAL should also support the memory controller,
interrupt controller and a possible on-MCP serial controller for GDB interaction
and simple diagnostics output, system timer initialization and control, and a
wallclock driver.

If there is already support for a member of the same architecture family, the porting
job may just consist of adding extra feature support to the existing HAL. Or if the new
target architecture only defines a subset of the architecture family, the HAL may need
additional configuration control, allowing parts of the existing HAL code to be
disabled.

Adding configuration information
Architecture and platform configuration information resides in two top-level files
targets and packages as well as in architecture and platform specific configuration
files (hal/<arch>/arch/current/include/pkgconf/hal_<arch>.h and
hal/<arch>/<platform>/current/include/pkgconf/hal_<arch>_<platform>.h.
Furthermore, each platform must define memory layouts for each startup type.

targets
Architecture and platform information must be added to the targets file.

target powerpc {
 alias { PowerPC powerpc-eabi }
 command_prefix powerpc-eabi
 packages { CYGPKG_HAL_POWERPC }
 hal hal/powerpc/arch

 cflags {
 ARCHFLAGS "-mcpu=860 -D_SOFT_FLOAT"
 ERRFLAGS "-Wall -Wpointer-arith -Wstrict-prototypes -Winline
-Wundef"
 CXXERRFLAGS "-Woverloaded-virtual"
 LANGFLAGS "-ffunction-sections -fdata-sections"
 DBGFLAGS "-g -O2"
 CXXLANGFLAGS "-fno-rtti -fno-exceptions -fvtable-gc -finit-priority"
 LDLANGFLAGS "-Wl,--gc-sections -Wl,-static"
 }
86 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
 platform cogent {
 alias { "Cogent board" }
 startup { ram rom stubs }
 packages {
 CYGPKG_HAL_POWERPC_COGENT
 CYGPKG_DEVICES_WALLCLOCK
 CYGPKG_DEVICES_WATCHDOG
 }
 }
}

pkgconf uses the entries in targets to create a build tree. The --target option matches
target name (powerpc) or its aliases (PowerPC powerpc-eabi), just as the --platform
option matches platform name (cogent) or its aliases (Cogent board). The same is
true for the --startup option which matches on the list of valid startup types (ram, rom
and stubs).
The command_prefix is the prefix on the cross compiler tools, usually the same target
triplet used when configuring the tools (powerpc-eabi).
packages lists the hardware-related packages that should be enabled if this target is
selected. Typically this will just be the appropriate architectural HAL package
provided for this architecture (CYGPKG_HAL_POWERPC), while hal specifies the relative
path of the source files.
cflags specifies the compiler and linker flags. The -finit-priority flag is required for
proper initialization of eCos, while -ffunction-sections, -fdata-sections, and
-Wl,--gc-sections are required to provide linker garbage collection which removes
functions and initialized data that are not going to be used. The other FLAGS definitions
can be set according to preference, taking care to ensure that ARCHFLAGS contains all
necessary flags for the particular architecture.
The platform option is used to define a new target platform. There can be several of
these for each architecture. The name and startup types are defined using platform,
alias, and startup as described above. packages defines the set of packages
supported by this particular platform. This set must include the platform HAL package
(CYGPKG_HAL_POWERPC_COGENT), but can name other packages
(CYGPKG_DEVICES_WALLCLOCK and CYGPKG_DEVICES_WATCHDOG) which will be
enabled per default when selecting this architecture/platform configuration.

packages
The individual packages must be defined in the packages file.

package CYGPKG_HAL_POWERPC {
 alias { "PowerPC common HAL" hal_powerpc powerpc_hal
powerpc_arch_hal }
 directory hal/powerpc/arch
eCos eCos Reference Manual n 87

The eCos Hardware Abstraction Layer (HAL)
 include_dir cyg/hal
 hardware
}

package CYGPKG_HAL_POWERPC_COGENT {
 alias { "PowerPC Cogent board support" hal_powerpc_cogent
powerpc_cogent_hal }
 directory hal/powerpc/cogent
 include_dir cyg/hal
 hardware
}

These are the definitions of the two packages named in the targets file. The aliases
can be used with the --disable- and --enable- options of pkgconf.
directory specifies the relative path of the source files, include_dir where header
files provided by the package should be copied to in the install directory, and
hardware specifies that these packages is normally associated with specific hardware
and should only be enabled for the appropriate hardware.

Package-specific configuration
The package-specific configuration files provide presentation information used by the
Configuration Tool, dependencies on other packages and of course additional
fine-grained options that are architecture and/or target specific. See the two files
hal/powerpc/arch/current/include/pkgconf/hal_powerpc.h and
hal/powerpc/cogent/current/include/pkgconf/hal_powerpc_cogent.h for an
example.

Memory layout information
For each target platform must be defined the memory layout used for any given
startup type. This information resides in two files
mlt_<arch>_<platform>_<startup>.ldi and
mlt_<arch>_<platform>_<startup>.mlt in the directory
hal/<arch>/<platform>/current/include/pkgconf/. The former is a linker script
fragment, the latter a file describing the layout for the eCos Configuration Tool.
Redefining the memory layout can be done in the Configuration Tool, which will
create the linker script (the .ldi file). It is also possible to do by hand, in which case
only the linker script should be created; when no .mlt file exists, the Configuration
Tool will not overwrite the default linker script.

Platform porting
Platform porting basically consists of making a copy of an existing platform directory
and changing the code to match the new platform. The header and source files in the
platform directory and their contents are described in “Architectural HAL files”
88 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
on page 67.
In particular the configuration information and memory layout need changing, as may
the board initialization code and the minimal serial drivers used by hal_diag.c and
plf_stub.c.
Another useful reference for porting to a new platform is the GNUPro documentation
on gdb stubs, which can be found at
http://www.cygnus.com/pubs/gnupro/3_GNUPro_Debugging_Tools/b_Debugging
_with_GDB/gdbThe_GDB_remote_serial_protocol.html

Architectural porting
The easiest way to make a new architectural port of eCos is to make a copy of an
existing HAL and change the code to suit the new CPU. This guide will use the
PowerPC Cogent board as an example. Wherever powerpc, ppc, or cogent is
mentioned in this guide or in the source files, you should replace the strings with
appropriate architecture and platform names. There are also a few files that need
renaming.
If there is simulator support for the new CPU it is possible to test big parts of the HAL
and the rest of the eCos kernel before a port to a specific platform is attempted. This is
an advantage as doing a platform port can cause problems of it own, making it
difficult to determine whether the architectural or platform parts of the port in
progress are to blame when something is not working properly.
When no simulator support exists, the starting point of a port is to produce a minimal
GDB stub for the target platform, which will allow code to be downloaded, executed
and/or debugged on the board. This guide is based on a situation where no simulator
exists as it would be the most likely scenario.

Writing an eCos GDB stub
A GDB stub has both a architectural part (description of the CPUs registers, exception
decoding, breakpoint and stepping model, etc.) and a platform part (board
initialization and simple serial driver).
Writing a stub is a subset of the work required to a full architectural and platform port
of the HAL (and thus eCos). The below sections will be a rough list of minimal
requirements for a stub; remaining elements of the files can be fleshed out when
extending the port to include full eCos functionality. The files and their contents are
described in “Architectural HAL files” on page 67.

TIP If the target board has an existing download stub (not necessarily GDB
compliant), the GDB stub can be tested by changing it to run from RAM
rather than ROM (using ram startup instead of stubs startup).

After downloading the stub and starting it, it should be possible to connect
eCos eCos Reference Manual n 89

The eCos Hardware Abstraction Layer (HAL)
GDB to the target. Note that trying to download another application may
cause the memory of the stub to be overwritten, so some consideration is
required when defining the memory layout.

If the target board does not have an existing download stub and requires a new
EPROM to be burned for each testing cycle, you may want to start with
writing a minimal stub which can only be used for downloading data to the
target board.

For this purpose you can skip the exception support code in vectors.S and
hack hal/common/current/src/stubrom/stubrom.c to jump directly to the
stub code without using a breakpoint.

TIP While working on improving the stub code or other parts of the HAL you can
use the simple diagnostics output functions (by way of diag_printf) as a crude
way of providing debugging feedback until you get full GDB stub
functionality in place.

TIP A good way of debugging the stub itself is to enable remote debugging in
GDB (set remotedebug 1). This makes GDB display any communication
between itself and the stub on the target. Consult the GDB file remote.c for
details on the protocol.

Architecture files
include/basetype.h

Implement in full. Little effort.

include/hal_arch.h

The following macros are required for the stub: HAL_SavedRegisters,
HAL_BREAKPOINT, HAL_BREAKINST, HAL_BREAKINST_SIZE,
HAL_GET_GDB_REGISTERS, and HAL_SET_GDB_REGISTERS.

include/hal_cache.h

The macros in this file can be left as empty if caches are kept disabled. This is
definitely the best way to start porting, avoiding cache problems entirely. The
cache is not of much use until eCos can be used with applications anyway.

include/hal_intr.h

It is necessary to implement enough exception handling code to properly handle
breakpoints.

As the porting job progresses, asynchronous break points
(CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT) may come in handy.
These require a minimal interrupt system to be in place.

include/hal_io.h

Should be fully implemented. Usually zero effort.
90 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
include/<arch>_regs.h

Can be filled in piecemeal as the porting job progresses.

include/<arch>_stub.h

Redefine NUMREGS, REGSIZE, and regnames using the same register layout as
GDB. The register definitions can be found in the config/<arch>/tm-<arch>.h
file in the GDB sources. The definitions for the PowerPC were found in
config/rs6000/tm-rs6000.h.

Discrepancies between what GDB expects and what is defined in the stub will
show up when you use the info reg command in GDB (and know what the
register contents on the target should be). Be careful to get the REGSIZE macro
defined correctly.

src/context.c

Nothing here required by the stub.

src/hal_misc.c

The two functions cyg_hal_invoke_constructors and
cyg_hal_exception_handler must be implemented. The former is the same on
most architectures and the latter just needs to call __handle_exception.

src/<arch>.ld

The linker script must be properly defined.

src/<arch>_stub.c

This file must be fully implemented.

__computeSignal can be defined to just return SIGTRAP as a minimal
implementation. Proper signal decoding may help debugging though.

Single-stepping can be implemented in one of two ways. Some architectures (such
as the PowerPC) have hardware support to control single-stepping making it
simple to implement. Other architectures require use of breakpoints to implement
the functionality, which requires instruction decoding. Examples of the latter
approach can be found in the ARM, MIPS, and MN10300 stubs. Implementing
instruction decoding obviously requires more effort.

src/vectors.S

This is the core file of the architecture HAL. It is hard to define what the minimal
implementation requirements are for stubs to work. It may be worth and/or
necessary to do a full implementation of this file to start with, but here are some
pointers anyway.

_start as defined for the PowerPC is about the minimum requirement, but you
can ignore MMU and cache setup while working on the stub.
eCos eCos Reference Manual n 91

The eCos Hardware Abstraction Layer (HAL)
__default_exception_vsr and restore_state must preserve enough state to
allow breakpoints without trashing CPU state for the application code. If you need
asynchronous GDB breakpoints __default_interrupt_vsr must also be defined
well enough to allow interrupts without trashing the CPU state of the interrupted
application code.

Assorted tables also need to be defined, depending on how much of the exception
and interrupt handlers is implemented.

Platform files
include/hal_diag.h

Shouldn’t require any changes.

include/plf_stub.h

This file provides the interface to the platform stub functions for the
generic-stub.c code.

The minimal stub (no asynchronous GDB breakpoints) only requires
HAL_STUB_PLATFORM_INIT_SERIAL, HAL_STUB_PLATFORM_GET_CHAR, and
HAL_STUB_PLATFORM_PUT_CHAR and the matching functions in plf_stub.c to be
defined.

src/<platform>.c

This file defines hal_hardware_init which takes care of initializing the board.
For the Cogent board this includes watchdog initialization and memory controller
setup. Other boards may have different requirements.

src/hal_diag.c

This file defines three functions that provide simple diagnostics output;
hal_diag_init, hal_diag_write_char, and hal_diag_read_char. Normally
these would implement a very simple serial driver. They could also address an
LCD or just some LEDs.

The simple serial driver for the Cogent board is implemented in a separate file,
cma_ser.c, which is shared with the plf_stub.c file.

src/plf_stub.c

This file implements the serial driver needed by the GDB stub. The minimal stub
only requires init, putc, and getc functions. A stub which supports
asynchronous breakpoints also requires functions to handle serial interrupts. For
example implementations see cma_ser.c or the plf_stub.c file for the
MN10300 stdeval1 board.

92 n eCos Reference Manual eCos

The eCos Hardware Abstraction Layer (HAL)
Building the stub
1. Prepare a build directory, configuring eCos for stubs startup.

2. Disable all packages except eCos common HAL, infrastructure, <arch> common
HAL, and <arch> <platform> board support.

3. Disable the HAL common options
CYGFUN_HAL_COMMON_KERNEL_SUPPORT and
CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT.

Enable the HAL common option
CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS.

4. Build libtarget.

5. Change to the directory hal/common/current/src/stubrom and type make. This
should result in an eCos GDB stub image file called stubrom. This can be
converted to SRECord or binary format (using objcopy) which can be used by
EPROM burner or PROM emulator software.

Filling in the blanks
When a GDB stub has been written and is working, finishing the HAL port is pretty
much a question of completing the header files and writing the functions that were not
needed for the stub.
eCos eCos Reference Manual n 93

eCos Interrupt Model

eCos Interrupt Model

This chapter describes the eCos interrupt model in detail.
Interrupt handling is an important part of most real-time systems. Timely handling of
interrupt sources is important. This can be severely impacted by certain activities that
must be considered atomic (i.e. uninterruptible). Typically these activities are
executed with interrupts disabled. In order to keep such activities to a minimum and
allow for the smallest possible interrupt latencies, eCos uses a split interrupt handling
scheme. In this scheme, interrupt handling is separated into two parts. The first part is
known as the Interrupt Service Routine or ISR. The second part is the Deferred
Service Routine or DSR. This separation explicitly allows for the DSRs to be run with
interrupts enabled, thus allowing other potentially higher priority interrupts to occur
and be processed while processing a lower priority interrupt.
In order for this model to work, the ISR should run quickly. If the service
requirements for the interrupt are small, the interrupt can be completely handled by
the ISR and no DSR is required. However, if servicing the interrupt is more complex,
a DSR should be used. The DSR will be run at some later time, at the point when
thread scheduling is allowed. Postponing the execution of DSRs until this time allows
for simple synchronization methods to be used by the kernel.
Further, this controlled calling — when thread scheduling is allowed — means that
DSRs can interact with the kernel, for example by signalling that an asynchronous
operation has completed.
In order to allow DSRs to run with interrupts enabled, the ISR for a particular interrupt

8

94 n eCos Reference Manual eCos

eCos Interrupt Model
source (or the hardware) must arrange that that interrupt will not recur until the DSR
has completed. In some cases, this is how the hardware works. Once an interrupt is
delivered another interrupt will not occur until re-enabled. In the general case,
however, it is up to the ISR to enforce this behavior. Typically the ISR will "mask" the
interrupt source, thus preventing its recurrence. The DSR will then unmask the
interrupt when it has been serviced thus allowing new occurrences of the interrupt to
be delivered when they happen.
Alternatively, if an ISR is doing very little per interrupt, for example transferring one
byte from memory to an IO device, it may only be necessary to interact with the rest of
the system when a "transfer" is complete. In such a case an ISR could execute many
times and only when it reaches the end of a buffer does it need to request execution of
its DSR.
If the interrupt source is "bursty", it may be OK for several interrupts and calls to the
ISR to occur before a requested DSR has been executed; the kernel maintains counts
for posted DSRs, and in such a case the DSR will eventually be called with a
parameter that tells it how many ISRs requested that the DSR be called. Care is
needed to get the interrupt code right for such a situation, for one call to the DSR is
required to do the work of several.
As mentioned above, the DSR will execute at some later time. Depending on the state
of the system, it may be executed at a much later time. There are periods during
certain kernel operations where thread scheduling is disabled, and hence DSRs are not
allowed to operate. These periods have been purposefully made as limited as possible
in the eCos kernel, but they still exist. In addition, user threads have the ability to
suspend scheduling as well, thus affecting the possible DSR execution latency. If a
DSR cannot be executed sufficiently quickly, the interrupt source may actually
overrun. This would be considered a system failure.
One of the problems system designers face is how much stack space to allow each
thread in the system. eCos does not dictate the size of thread stacks, it is left to the
user when the thread is created. The size of the stack depends on the thread
requirements as well as some fixed overhead required by the system. In this case, the
overhead is enough stack space to hold a complete thread state (the actual amount
depends on the CPU architecture). Guidelines for the minimum stack requirements are
provided by the HAL using the symbol CYGNUM_HAL_STACK_SIZE_MINIMUM.
A potential problem with this scheme is with nested interrupts. Since interrupts are
reenabled during the DSR portion of servicing an interrupt, there is the possibility of a
new interrupt (hopefully from a separate source) arriving while this processing takes
place. When this new interrupt is serviced some state information about the
interrupted processing will be saved on the stack. The amount of this information
again depends on the CPU architecture and in some cases it is substantial. This implies
that any given stack would need enough space to potentially hold "N" interrupt
eCos eCos Reference Manual n 95

eCos Interrupt Model
frames. In a realtime system with many threads this is an untenable situation. To solve
this problem, eCos allows for a separate interrupt stack to be used while processing
interrupts. This stack needs to be large enough to support "N" nested interrupts, but
each individual thread stack only needs the overhead of a single interrupt state. This is
because the thread state is kept on the thread’s own stack, including information about
any interrupt that caused the thread to be scheduled. This is a much better situation in
the end, however, since only the interrupt stack need be large enough to handle the
potential interrupt servicing needs.
eCos allows for the use of the interrupt stack to be totally configurable. The user can
elect to not use a separate interrupt stack. This requires making all thread stacks large
enough but does reduce the overhead of switching stacks while processing interrupts.
On the other hand, if memory is tight, then choosing a separate interrupt stack would
be warranted at the cost of a few machine cycles during the processing of each
interrupt.
Not all target HALs support this feature from day one anyway; however common
configuration features such as this may still be presented in the config tool, and
present in include files, even if the actual target selected does not support the feature at
this time.
The following problem with the interrupt system has been observed. On the mn10300
simulator, interrupts were occurring immediately after they were re-enabled in the
DSR. This should really be considered a case of interrupt overrun since there is no
possibility of useful [or any] processing between the time an interrupt has been
serviced and an subsequent interrupt occurs, hence the system is totally saturated. The
problem came about because the stack was overflowing. It was a user [thread] stack
that overflowed because DSR processing was taking place on the thread stack.
Analysis of this problem led to a rework of how interrupts are processed, in particular
the use of a separate interrupt stack during interrupt processing (both ISR and DSR
parts). The overflow can still happen, but now it is restricted to only the interrupt
stack. The system designer can make accommodations for this by making a suitably
large interrupt stack if it is known that the "overrun" is finite, e.g. in the case of a serial
device, this could be the depth of some FIFO. In any case, overrun should be avoided,
but having only a single stack that needs to suffer multiple interrupt frames allows for
this failure to be detected simply.
Of course, it is only worthwhile having a separate interrupt stack if you are using an
eCos configuration that has a scheduler and multiple threads. If there is no kernel,
then the C library arranges to call main(), or your application may be entered from
cyg_user_start(), on the startup stack. It runs on the only stack there is in the
system. Depending on the design of the particular HAL for your target platform, it is
natural to re-use the startup stack as the interrupt stack as soon as the scheduler is
running. Since this is only sensible if there is a kernel, HALs typically only implement
96 n eCos Reference Manual eCos

eCos Interrupt Model
the separate interrupt stack if the kernel is present.
eCos eCos Reference Manual n 97

eCos Interrupt Model
Part III: PCI Library
98 n eCos Reference Manual eCos

The eCos PCI Library

The eCos PCI Library

The PCI library is an optional part of eCos, and is only applicable to some packages.

PCI Library
The eCos PCI library provides the following functionality:
1) Scan the PCI bus for specific devices or devices of a certain class.
2) Read and change generic PCI information.
3) Read and change device-specific PCI information.
4) Allocate PCI memory and IO space to devices.
5) Translate a device’s PCI interrupts to equivalent HAL vectors.
Example code fragments are from the pci1 test (see
io/pci/<release>/tests/pci1.c).
All of the functions described below are declared in the header file <cyg/io/pci.h>
which all clients of the PCI library should include.

Initialising the bus
The PCI bus needs to be initialized before it can be used. This only needs to be done
once - some HALs may do it as part of the platform initialization procedure, other
HALs may leave it to the application to do it. The following function will do the
initialization only once, so it’s safe to call from multiple drivers:

9

eCos eCos Reference Manual n 99

The eCos PCI Library
void cyg_pci_init(void);

Scanning for devices
After the bus has been initialized, it is possible to scan it for devices. This is done
using the function:
cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
 cyg_pci_device_id *next_devid);

It will scan the bus for devices starting at cur_devid. If a device is found, its devid is
stored in next_devid and the function returns true.
The pci1 test’s outer loop looks like:
cyg_pci_init();
 if (cyg_pci_find_next(CYG_PCI_NULL_DEVID, &devid)) {
 do {
 <use devid>
 } while (cyg_pci_find_next(devid, &devid));
 }

What happens is that the bus gets initialized and a scan is started.
CYG_PCI_NULL_DEVID causes cyg_pci_find_next() to restart its scan. If the bus
does not contain any devices, the first call to cyg_pci_find_next() will return false.
If the call returns true, a loop is entered where the found devid is used. After devid
processing has completed, the next device on the bus is searched for;
cyg_pci_find_next() continues its scan from the current devid. The loop terminates
when no more devices are found on the bus.
This is the generic way of scanning the bus, enumerating all the devices on the bus.
But if the application is looking for a device of a given device class (e.g., a SCSI
controller), or a specific vendor device, these functions simplify the task a bit:
cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
 cyg_pci_device_id *devid);
cyg_bool cyg_pci_find_device(cyg_uint16 vendor, cyg_uint16 device,
 cyg_pci_device_id *devid);

They work just like cyg_pci_find_next(), but only return true when the, dev_class or
vendor/device qualifiers match those of a device on the bus. The devid serves as both
an input and an output operand: the scan starts at the given device, and if a device is
found devid is updated with the value for the found device.
The <cyg/io/pci_cfg.h> header file (included by pci.h) contains definitions for PCI
class, vendor and device codes which can be used as arguments to the find functions.
The list of vendor and device codes is not complete: add new codes as necessary. If
possible also register the codes at the PCI Code List (http://www.yourvote.com/pci)
which is where the eCos definitions are generated from.
100 n eCos Reference Manual eCos

The eCos PCI Library
Generic config information
When a valid device ID (devid) is found using one of the above functions, the
associated device can be queried and controlled using the functions:
void cyg_pci_get_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);
void cyg_pci_set_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

The cyg_pci_device structure (defined in pci.h) primarily holds information as
described by the PCI specification [1]. The pci1 test prints out some of this
information:
 // Get device info
 cyg_pci_get_device_info(devid, &dev_info);
 diag_printf("\n Command 0x%04x, Status 0x%04x\n",
 dev_info.command, dev_info.status);

The command register can also be written to, controlling (among other things)
whether the device responds to IO and memory access from the bus.

Specific config information
The above functions only allow access to generic PCI config registers. A device can
have extra config registers not specified by the PCI specification. These can be
accessed with these functions:
void cyg_pci_read_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint8 *val);
void cyg_pci_read_config_uint16(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint16 *val);
void cyg_pci_read_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 *val);
void cyg_pci_write_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint8 val);
void cyg_pci_write_config_uint16(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint16 val);
void cyg_pci_write_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 val);

The write functions should only be used for device-specific config registers since
using them on generic registers may invalidate the contents of a previously fetched
cyg_pci_device structure.

Allocating memory
A PCI device ignores all IO and memory access from the PCI bus until it has been
activated. Activation cannot happen until after device configuration. Configuration
means telling the device where it should map its IO and memory resources. This is
eCos eCos Reference Manual n 101

The eCos PCI Library
done with this function:
cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info);

This function handles all IO and memory regions that need configuration on the
device. Each region is represented in the PCI device’s config space by one of six
BARs (Base Address Registers) and is handled individually according to type using
these functions:
cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS64 *base);
 cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS32 *base);

The memory bases (in two distinct address spaces) are increased as memory regions
are allocated to devices. Allocation will fail (the function returns false) if the base
exceeds the limits of the address space (IO is 1MB, memory is 2^32 or 2^64 bytes).
These functions can also be called directly be the application/driver if necessary, but
this should not be necessary.
The bases are initialized with default values provided by the HAL. It is possible for an
application to override these using the following functions:
void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);
void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

When a device has been configured, the cyg_pci_device structure will contain the
physical address in the CPU’s address space where the device’s memory regions can
be accessed.
This information is provided in base_map[] - there is a 32 bit word for each of the
device’s BARs. For 32 bit PCI memory regions, each 32 bit word will be an actual
pointer that can be used immediately by the driver: the memory space will normally
be linearly addressable by the CPU.
However, for 64 bit PCI memory regions, some (or all) of the region may be outside
of the CPUs address space. In this case the driver will need to know how to access the
region in segments. This functionality may be adopted by the eCos HAL if deemed
useful in the future. The 2GB available on many systems should suffice though.

Interrupts
A device may generate interrupts. The HAL vector associated with a given device on
the bus is platform specific. This function allows a driver to find the actual interrupt
vector for a given device:
cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
 CYG_ADDRWORD *vec);

If the function returns false, no interrupts will be generated by the device. If it returns
102 n eCos Reference Manual eCos

The eCos PCI Library
true, the CYG_ADDRWORD pointed to by vec is updated with the HAL interrupt
vector the device will be using. This is how the function is used in the pci1 test:
 if (cyg_pci_translate_interrupt(&dev_info, &irq))
 diag_printf(" Wired to HAL vector %d\n", irq);
 else

 diag_printf(" Does not generate interrupts.\n");

The application/drive should attach an interrupt handler to a device’s interrupt before
activating the device.

Activating a device
When the device has been allocated memory space it can be activated. This is not done
by the library since a driver may have to initialize more state on the device before it
can be safely activated.
Activating the device is done by enabling flags in its command word. As an example,
see the pci1 test which can be configured to enable the devices it finds. This allows
these to be accessed from GDB (if a breakpoint is set on cyg_test_exit):
#ifdef ENABLE_PCI_DEVICES
 {
 cyg_uint16 cmd;

 // Don’t use cyg_pci_set_device_info since it clears
 // some of the fields we want to print out below.
 cyg_pci_read_config_uint16(dev_info.devid,
 CYG_PCI_CFG_COMMAND, &cmd);
 cmd |=
CYG_PCI_CFG_COMMAND_IO|CYG_PCI_CFG_COMMAND_MEMORY;
 cyg_pci_write_config_uint16(dev_info.devid,
 CYG_PCI_CFG_COMMAND, cmd);
 }
 diag_printf(" **** Device IO and MEM access
enabled\n");
#endif

 Note: that the best way to activate a device is actually through
cyg_pci_set_device_info(), but in this particular case the cyg_pci_device structure
contents from before the activation is required for printout further down in the code.

Links
See these links for more information about PCI.
1) See http://www.pcisig.com (information on the PCI specifications)
2) See http://www.yourvote.com/pci (list of vendor and device IDs)
3) See http://www.picmg.org (PCI Industrial Computer Manufacturers Group)
eCos eCos Reference Manual n 103

The eCos PCI Library
PCI Library reference
This document defines the PCI Support Library for eCos.
The PCI support library provides a set of routines for accessing the PCI bus
configuration space in a portable manner. This is provided by two APIs. The high
level API is used by device drivers, or other code, to access the PCI configuration
space portably. The low level API is used by the PCI library itself to access the
hardware in a platform-specific manner, and may also be used by device drivers to
access the PCI configuration space directly.
Underlying the low-level API is HAL support for the basic Configuration space
operations. These should not generally be used by any code other than the PCI library,
and are present in the HAL to allow low level initialization of the PCI bus and devices
to take place if necessary.

PCI Library API
The PCI library provides the following routines and types for accessing the PCI
configuration space.
The API for the PCI library is found in the header file <cyg/io/pci.h>.

Definitions
The header file contains definitions for the common configuration structure offsets
and specimin values for device, vendor and class code.

Types and data structures
The following types are defined:
typedef CYG_WORD32 cyg_pci_device_id;

This is comprised of the bus number, device number and functional unit number
packed into a single word. The macro CYG_PCI_DEV_MAKE_ID() may be used to
construct a device id from the bus, device and functional unit numbers of a device.
Similarly the macros CYG_PCI_DEV_GET_BUS() and
CYG_PCI_DEV_GET_DEVFN() may be used to extract them. It should not be
necessary to use these macros under normal circumstances.
typedef struct cyg_pci_device;

This structure is used to contain data read from a PCI device’s configuration header by
cyg_pci_get_device_info(). It is also used to record the resource allocations made to
the device.
typedef CYG_WORD64 CYG_PCI_ADDRESS64;
typedef CYG_WORD32 CYG_PCI_ADDRESS32;
104 n eCos Reference Manual eCos

The eCos PCI Library
Pointers in the PCI address space are 32 bit (IO space) or 32/64 bit (memory space). In
most platform and device configurations all of PCI memory will be linearly
addressable using only 32 bit pointers as read from base_map[].
The 64 bit type is used to allow handling 64 bit devices in the future, should it be
necessary, without changing the library’s API.

Functions
void cyg_pci_init(void);

Initialize the PCI library and establish contact with the hardware. This function is
idempotent and can be called either by all drivers in the system, or just from an
application initialization function.

cyg_bool cyg_pci_find_device(cyg_uint16 vendor,
 cyg_uint16 device,
 cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device with the given vendor and
device ids. The search starts at the device pointed to by devid, or at the first slot if it
contains CYG_PCI_NULL_DEVID. *devid will be updated with the ID of the next
device found. Returns true if one is found and false if not.

cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
 cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device with the given class code. The
search starts at the device pointed to by devid, or at the first slot if it contains
CYG_PCI_NULL_DEVID.
*devid will be updated with the ID of the next device found. Returns true if one is
found and false if not.

cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
 cyg_pci_device_id *next_devid);

Searches the PCI configuration space for the next valid device after cur_devid. If
cur_devid is given the value CYG_PCI_NULL_DEVID, then the search starts at the
first slot. It is permitted for next_devid to point to cur_devid. Returns true if another
device is found and false if not.

void cyg_pci_get_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

This function gets the PCI configuration information for the device indicated in devid.
The common fields of the cyg_pci_device structure, and the appropriate fields of the
relevant header union member are filled in from the device’s configuration space. If
the device has not been enabled, then this function will also fetch the size and type
information from the base address registers and place it in the base_size[] array.

void cyg_pci_set_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);
eCos eCos Reference Manual n 105

The eCos PCI Library
This function sets the PCI configuration information for the device indicated in devid.
Only the configuration space registers that are writable are actually written. Once all
the fields have been written, the device info will be read back into *dev_info, so that it
reflects the true state of the hardware.

void cyg_pci_read_config_uint8(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint8 *val);
void cyg_pci_read_config_uint16(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint16 *val);
void cyg_pci_read_config_uint32(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint32 *val);

These functions read registers of the appropriate size from the configuration space of
the given device. They should mainly be used to access registers that are device
specific. General PCI registers are best accessed through cyg_pci_get_device_info().

void cyg_pci_write_config_uint8(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint8 val);
void cyg_pci_write_config_uint16(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint16 val);
void cyg_pci_write_config_uint32(cyg_pci_device_id devid, cyg_uint8 offset,
cyg_uint32 val);

These functions write registers of the appropriate size to the configuration space of the
given device. They should mainly be used to access registers that are device specific.
General PCI registers are best accessed through cyg_pci_get_device_info(). Writing
the general registers this way may render the contents of a cyg_pci_device structure
invalid.

Resource allocation
These routines allocate memory and IO space to PCI devices.

cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info)

Allocate memory and IO space to all base address registers using the current memory
and IO base addresses in the library. The allocated base addresses, translated into
directly usable values, will be put into the matching base_map[] entries in *dev_info.
If *dev_info does not contain valid base_size[] entries, then the result is false. This
function will also call cyg_pci_translate_interrupt() to put the interrupt vector into the
hal_vector entry.

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info, CYG_ADDRWORD
*vec);

Translate the device’s PCI interrupt (INTA#-INTD#) to the associated HAL vector.
This may also depend on which slot the device occupies. If the device may generate
interrupts, the translated vector number will be stored in vec and the result is true.
Otherwise the result is false.

cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
106 n eCos Reference Manual eCos

The eCos PCI Library
 cyg_uint32 bar,
 CYG_PCI_ADDRESS64 *base);
cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS32 *base);

These routines allocate memory or IO space to the base address register indicated by
bar. The base address in *base will be correctly aligned and the address of the next
free location will be written back into it if the allocation succeeds. If the base address
register is of the wrong type for this allocation, or dev_info does not contain valid
base_size[] entries, the result is false. These functions allow a device driver to set up
its own mappings if it wants. Most devices should probably use
cyg_pci_configure_device().

void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);
void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

These routines set the base addresses for memory and IO mappings to be used by the
memory allocation routines. Normally these base addresses will be set to default
values based on the platform. These routines allow these to be changed by application
code if necessary.

PCI Library Hardware API
This API is used by the PCI library to access the PCI bus configuration space.
Although it should not normally be necessary, this API may also be used by device
driver or application code to perform PCI bus operations not supported by the PCI
library.

void cyg_pcihw_init(void);

Initialize the PCI hardware so that the configuration space may be accessed.
void cyg_pcihw_read_config_uint8(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint8 *val);
void cyg_pcihw_read_config_uint16(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint16 *val);
void cyg_pcihw_read_config_uint32(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint32 *val);

These functions read a register of the appropriate size from the PCI configuration
space at an address composed from the bus, devfn and offset arguments.

void cyg_pcihw_write_config_uint8(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint8 val);
void cyg_pcihw_write_config_uint16(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint16 val);
void cyg_pcihw_write_config_uint32(cyg_uint8 bus, cyg_uint8 devfn, cyg_uint8
offset, cyg_uint32 val);

These functions write a register of the appropriate size to the PCI configuration space
at an address composed from the bus, devfn and offset arguments.
eCos eCos Reference Manual n 107

The eCos PCI Library
cyg_bool cyg_pcihw_translate_interrupt(cyg_uint8 bus, cyg_uint8 devfn,
CYG_ADDRWORD *vec);

This function interrogates the device and determines which HAL interrupt vector it is
connected to.

HAL PCI support
HAL support consists of a set of C macros that provide the implementation of the low
level PCI API.

HAL_PCI_INIT()

Initialize the PCI bus.
HAL_PCI_READ_UINT8(bus, devfn, offset, val)
HAL_PCI_READ_UINT16(bus, devfn, offset, val)
HAL_PCI_READ_UINT32(bus, devfn, offset, val)

Read a value from the PCI configuration space of the appropriate size at an address
composed from the bus, devfn and offset.

HAL_PCI_WRITE_UINT8(bus, devfn, offset, val)
HAL_PCI_WRITE_UINT16(bus, devfn, offset, val)
HAL_PCI_WRITE_UINT32(bus, devfn, offset, val)

Write a value to the PCI configuration space of the appropriate size at an address
composed from the bus, devfn and offset.

HAL_PCI_TRANSLATE_INTERRUPT(bus, devfn, *vec, valid)

Translate the device’s interrupt line into a HAL interrupt vector.
HAL_PCI_ALLOC_BASE_MEMORY
HAL_PCI_ALLOC_BASE_IO

These macros define the default base addresses used to initialize the memory and IO
allocation pointers.

HAL_PCI_PHYSICAL_MEMORY_BASE
HAL_PCI_PHYSICAL_IO_BASE

PCI memory and IO range do not always correspond directly to physical memory or
IO addresses. Frequently the PCI address spaces are windowed into the processor’s
address range at some offset. These macros define offsets to be added to the PCI base
addresses to translate PCI bus addresses into physical memory addresses that can be
used to access the allocated memory or IO space.

NOTE The chunk of PCI memory space directly addressable though the window by
the CPU may be smaller than the amount of PCI memory actually provided.
In that case drivers will have to access PCI memory space in segments. Doing
this will be platform specific and is currently beyond the scope of the HAL.
108 n eCos Reference Manual eCos

Part IV: I/O Package (Device
Drivers)
eCos eCos Reference Manual n 109

Introduction

Introduction

The I/O package is designed as a general purpose framework for supporting device
drivers. This includes all classes of drivers from simple serial to networking stacks
and beyond.
Components of the I/O package, such as device drivers, are configured into the system
just like all other components. Additionally, end users may add their own drivers to
this set.
While the set of drivers (and the devices they represent) may be considered static, they
must be accessed via an opaque “handle”. Each device in the system has a unique
name and the cyg_io_lookup() function is used to map that name onto the handle for
the device. This “hiding” of the device implementation allows for generic, named
devices, as well as more flexibility. Also, the cyg_io_lookup() function provides
drivers the opportunity to initialize the device when usage actually starts.
All devices have a name. The standard provided devices use names such as
“/dev/console” and “/dev/serial0”, where the “/dev/” prefix indicates that this is the
name of a device.
The entire I/O package API, as well as the standard set of provided drivers, is written
in C.
Basic functions are provided to send data to and receive data from a device. The
details of how this is done is left to the device [class] itself. For example, writing data
to a block device like a disk drive may have different semantics than writing to a serial
port.

10
110 n eCos Reference Manual eCos

Introduction
Additional functions are provided to manipulate the state of the driver and/or the
actual device. These functions are, by design, quite specific to the actual driver.
This driver model supports layering; in other words, a device may actually be created
“on top of” another device. For example, the “tty” (terminal-like) devices are built on
top of simple serial devices. The upper layer then has the flexibility to add features
and functions not found at the lower layers. In this case the “tty” device provides for
line buffering and editing not available from the simple serial drivers.
Some drivers will support visibility of the layers they depend upon. The “tty” driver
allows information about the actual serial device to be manipulated by passing get/set
config calls that use a serial driver “key” down to the serial driver itself.
eCos eCos Reference Manual n 111

User API

User API

All functions, except cyg_io_lookup() require an I/O “handle”.
All functions return a value of the type Cyg_ErrNo. If an error condition is detected,
this value will be negative and the absolute value indicates the actual error, as
specified in cyg/error/codes.h. The only other legal return value will be ENOERR.
All other function arguments are pointers (references). This allows the drivers to pass
information efficiently, both into and out of the driver. The most striking example of
this is the “length” value passed to the read and write functions. This parameter
contains the desired length of data on input to the function and the actual transferred
length on return.

// Lookup a device and return its handle

Cyg_ErrNo cyg_io_lookup(

const char *name,
 cyg_io_handle_t *handle)

This function maps a device name onto an appropriate handle. If the named device is
not in the system, then the error -ENOENT is returned. If the device is found, then the
handle for the device is returned by way of the handle pointer *handle.

 // Write data to a device
Cyg_ErrNo cyg_io_write(

 cyg_io_handle_t handle,
 const void *buf,
 cyg_uint32 *len)

11
112 n eCos Reference Manual eCos

User API
This function sends data to a device. The size of data to send is contained in *len and
the actual size sent will be returned in the same place.

 // Read data from a device
Cyg_ErrNo cyg_io_read(

 cyg_io_handle_t handle,
 void *buf,
 cyg_uint32 *len)

This function receives data from a device. The desired size of data to receive is
contained in *len and the actual size obtained will be returned in the same place.

 // Get the configuration of a device

Cyg_ErrNo cyg_io_get_config(

 cyg_io_handle_t handle,
 cyg_uint32 key,
 void *buf,
 cyg_uint32 *len)

This function is used to obtain run-time configuration about a device. The type of
information retrieved is specified by the key. The data will be returned in the given
buffer. The value of *len should contain the amount of data requested, which must
be at least as large as the size appropriate to the selected key. The actual size of data
retrieved is placed in *len. The appropriate key values differ for each driver and are
all listed in the file cyg/io/config_keys.h.

 // Change the configuration of a device

Cyg_ErrNo cyg_io_set_config(

 cyg_io_handle_t handle,
 cyg_uint32 key,
 const void *buf,
 cyg_uint32 *len)

This function is used to manipulate or change the run-time configuration of a device.
The type of information is specified by the key. The data will be obtained from the
given buffer. The value of *len should contain the amount of data provided, which
must match the size appropriate to the selected key. The appropriate key values differ
for each driver and are all listed in the file cyg/io/config_keys.h.
eCos eCos Reference Manual n 113

Serial driver details

Serial driver details

Two different classes of serial drivers are provided as a standard part of the eCos
system. These are described as “simple serial” (serial) and “tty-like” (tty).

“simple serial” driver
Use the include file cyg/io/serialio.h for this driver.
The simple serial driver is capable of sending and receiving blocks of raw data to a
serial device. Controls are provided to configure the actual hardware, but there is no
manipulation of the data by this driver.
There may be many instances of this driver in a given system, one for each serial
channel. Each channel corresponds to a physical device and there will typically be a
device module created for this purpose. The device modules themselves are
configurable, allowing specification of the actual hardware details, as well as such
details as whether the channel should be buffered by the serial driver, etc.

Runtime configuration
typedef struct {
 cyg_serial_baud_rate_t baud;
 cyg_serial_stop_bits_t stop;
 cyg_serial_parity_t parity;
 cyg_serial_word_length_t word_length;

12
114 n eCos Reference Manual eCos

Serial driver details
 cyg_uint32 flags;
} cyg_serial_info_t;

The field "word_length" contains the number of data bits per word (character). This
must be one of the values:
 CYGNUM_SERIAL_WORD_LENGTH_5
 CYGNUM_SERIAL_WORD_LENGTH_6
 CYGNUM_SERIAL_WORD_LENGTH_7
 CYGNUM_SERIAL_WORD_LENGTH_8

The field "baud" contains a baud rate selection. This must be one of the values:
 CYGNUM_SERIAL_BAUD_50
 CYGNUM_SERIAL_BAUD_75
 CYGNUM_SERIAL_BAUD_110
 CYGNUM_SERIAL_BAUD_134_5
 CYGNUM_SERIAL_BAUD_150
 CYGNUM_SERIAL_BAUD_200
 CYGNUM_SERIAL_BAUD_300
 CYGNUM_SERIAL_BAUD_600
 CYGNUM_SERIAL_BAUD_1200
 CYGNUM_SERIAL_BAUD_1800
 CYGNUM_SERIAL_BAUD_2400
 CYGNUM_SERIAL_BAUD_3600
 CYGNUM_SERIAL_BAUD_4800
 CYGNUM_SERIAL_BAUD_7200
 CYGNUM_SERIAL_BAUD_9600
 CYGNUM_SERIAL_BAUD_14400
 CYGNUM_SERIAL_BAUD_19200
 CYGNUM_SERIAL_BAUD_38400
 CYGNUM_SERIAL_BAUD_57600
 CYGNUM_SERIAL_BAUD_115200
 CYGNUM_SERIAL_BAUD_234000

The field "stop" contains the number of stop bits. This must be one of the values:
 CYGNUM_SERIAL_STOP_1
 CYGNUM_SERIAL_STOP_1_5
 CYGNUM_SERIAL_STOP_2

NOTE On most hardware, a selection of 1.5 stop bits is only valid if the word
(character) length is 5.

The field "parity" contains the parity mode. This must be one of the values:
 CYGNUM_SERIAL_PARITY_NONE
 CYGNUM_SERIAL_PARITY_EVEN
 CYGNUM_SERIAL_PARITY_ODD
 CYGNUM_SERIAL_PARITY_MARK
eCos eCos Reference Manual n 115

Serial driver details
 CYGNUM_SERIAL_PARITY_SPACE

The field "flags" is a bitmask which controls the behavior of the serial device driver. It
should be built from the values CYG_SERIAL_FLAGS_xxx defined below:
#define CYG_SERIAL_FLAGS_RTSCTS 0x0001

If this bit is set then the port is placed in “hardware handshake” mode. In this mode,
the CTS and RTS pins control when data is allowed to be sent/received at the port.
This bit is ignored if the hardware does not support this level of handshake.
typedef struct {
 cyg_int32 rx_bufsize;
 cyg_int32 rx_count;
 cyg_int32 tx_bufsize;
 cyg_int32 tx_count;
}
cyg_serial_buf_info_t;

The field 'rx_bufsize' contains the total size of the incoming data buffer. This is set to
0 on devices that do not support buffering (i.e. polled devices).
The field 'rx_count' contains the number of bytes currently occupied in the incoming
data buffer. This is set to 0 on devices that do not support buffering (i.e. polled
devices).
The field 'tx_bufsize' contains the total size of the transmit data buffer. This is set to 0
on devices that do not support buffering (i.e. polled devices).
The field 'tx_count' contains the number of bytes currently occrupied in the transmit
data buffer. This is set to 0 on devices that do not support buffering (i.e. polled
devices).

API details
 cyg_io_write(handle, buf, len)

Send the data from "buf" to the device. The driver maintains a buffer to hold the data.
The size of the intermediate buffer is configurable within the interface module. The
data is not modified at all while it is being buffered. On return, *len contains the
amount of characters actually consumed .
It is possible to configure the write call to be blocking (default) or non-blocking.
Non-blocking mode requires both the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING to be enabled, and the
specific device to be set to non-blocking mode for writes (see cyg_io_set_config). In
blocking mode, the call will not return until there is space in the buffer and the entire
contents of "buf" have been consumed.
116 n eCos Reference Manual eCos

Serial driver details
In non-blocking mode, as much as possible gets consumed from "buf". If everything
was consumed, the call returns ENOERR. If only part of the "buf" contents was
consumed, -EAGAIN is returned and the caller must try again. On return, *len
contains the amount of characters actually consumed .
The call can also return -EINTR if interrupted via the cyg_io_get_config/ABORT
key. On return, *len contains the amount of characters actually consumed .
 cyg_io_read(handle, buf, len)

Receive data into the specified buffer from the device. No manipulation of the data is
performed before being transferred. An interrupt driven interface module will support
data arriving when no read is pending by buffering the data in the serial driver. Again,
this buffering is completely configurable. On return, *len contains the amount of
characters actually received.
It is possible to configure the read call to be blocking (default) or non-blocking.
Non-blocking mode requires both the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING to be enabled, and the
specific device to be set to non-blocking mode for reads (see cyg_io_set_config).
In blocking mode, the call will not return until the requested amount of data has been
read.
In non-blocking mode, data waiting in the device buffer is copied to "buf", and the call
returns immediately. If there was enough data in the buffer to fulfill the request,
ENOERR is returned. If only part of the request could be fulfilled, -EAGAIN is
returned and the caller must try again. On return, *len contains the amount of
characters actually received.
The call can also return -EINTR if interrupted via the cyg_io_get_config/ABORT
key. On return, *len contains the amount of characters actually received.
 cyg_io_get_config(handle, key, buf, len)

This function returns current [runtime] information about the device and/or driver.

Key:

CYG_IO_GET_CONFIG_SERIAL_INFO

Buf type:

cyg_serial_info_t

Function:

This function retrieves the current state of the driver and hardware. This
information contains fields for hardware baud rate, number of stop bits, and parity
mode. It also includes a set of flags that control the port, such as hardware flow
control.
eCos eCos Reference Manual n 117

Serial driver details
Key:

 CYG_IO_GET_CONFIG_SERIAL_BUFFER_INFO

Buf type:

 cyg_serial_buf_info_t

Function:

This function retrieves the current state of the software buffers in the serial
drivers. For both receive and transmit buffers it returns the total buffer size and
the current number of bytes occupied in the buffer. It does not take into account
any buffering such as FIFOs or holding registers that the serial device itself may
have.

Key:

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_DRAIN

Buf type:

void *

Function:

This function waits for any buffered output to complete. This function only
completes when there is no more data remaining to be sent to the device.

Key:

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_FLUSH

Buf type:

void *

Function:

This function discards any buffered output for the device.

Key:

CYG_IO_GET_CONFIG_SERIAL_INPUT_DRAIN

Buf type:

void *

Function:

This function discards any buffered input for the device.

Key:

 CYG_IO_GET_CONFIG_SERIAL_ABORT

Buf type:

 void*

Function:
118 n eCos Reference Manual eCos

Serial driver details
This function will cause any pending read or write calls on this device to return
with -EABORT.

Key:

 CYG_IO_GET_CONFIG_SERIAL_READ_BLOCKING

Buf type:

 cyg_uint32 (values 0 or 1)

Function:

This function will read back the blocking-mode setting for read calls on this
device. This call is only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

Key:

 CYG_IO_GET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type:

 cyg_uint32 (values 0 or 1)

Function:

This function will read back the blocking-mode setting for write calls on this
device. This call is only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

 cyg_io_set_config(handle, key, buf, len)

This function is used to update or change runtime configuration of a port.

Key:

 CYG_IO_SET_CONFIG_SERIAL_INFO

Buf type:

 cyg_serial_info_t

Function:

This function updates the information for the driver and hardware. The
information contains fields for hardware baud rate, number of stop bits, and parity
mode. It also includes a set of flags that control the port, such as hardware flow
control.

Key:

 CYG_IO_SET_CONFIG_SERIAL_READ_BLOCKING

Buf type:

 cyg_uint32 (values 0 or 1)

Function:
eCos eCos Reference Manual n 119

Serial driver details
This function will set the blocking-mode for read calls on this device. This call is
only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

Key:

 CYG_IO_SET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type:

 cyg_uint32 (values 0 or 1)

Function:

This function will set the blocking-mode for write calls on this device. This call is
only available if the configuration option
CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

 “tty” driver
Use the include file cyg/io/ttyio.h for this driver.
This driver is built on top of the simple serial driver and is typically used for a device
that interfaces with humans such as a terminal. It provides some minimal formatting
of data on output and allows for line-oriented editing on input.

Runtime configuration
typedef struct {
 cyg_uint32 tty_out_flags;
 cyg_uint32 tty_in_flags;
} cyg_tty_info_t;

The field "tty_out_flags" is used to control what happens to data as it is send to the
serial port. It contains a bitmap comprised of the bits as defined by the
CYG_TTY_OUT_FLAGS_xxx values below.
#define CYG_TTY_OUT_FLAGS_CRLF 0x0001 // Map ’\n’ => ’\n\r’ on output

If this bit is set in ’tty_out_flags’, any occurrence of the character ’\n’ will be replaced
by the sequence ’\n\r’ before sending to the device.
The field "tty_in_flags" is used to control how data is handled as it comes from the
serial port. It contains a bitmap comprised of the bits as defined by the
CYG_TTY_IN_FLAGS_xxx values below.
#define CYG_TTY_IN_FLAGS_CR 0x0001 // Map ’\r’ => ’\n’ on input

If this bit is set in "tty_in_flags", the character "\r" (“return” or “enter” on most
120 n eCos Reference Manual eCos

Serial driver details
keyboards) will be mapped to "\n".
#define CYG_TTY_IN_FLAGS_CRLF 0x0002 // Map ’\n\r’ => ’\n’ on input

If this bit is set in "tty_in_flags", the character sequence "\n\r" (often sent by
DOS/Windows based terminals) will be mapped to "\n".
#define CYG_TTY_IN_FLAGS_BINARY 0x0004 // No input processing

If this bit is set in "tty_in_flags", the input will not be manipulated in any way before
being placed in the user’s buffer.
#define CYG_TTY_IN_FLAGS_ECHO 0x0008 // Echo characters as processed

If this bit is set in "tty_in_flags", characters will be echoed back to the serial port as
they are processed.

API details
 cyg_io_read(handle, buf, len)

This function is used to read data from the device. In the default case, data is read until
an end-of-line character ("\n" or "\r") is read. Additionally, the characters are echoed
back to the [terminal] device. Minimal editing of the input is also supported.

NOTE When connecting to a remote target via GDB it is not possible to provide
console input while GDB is connected. The GDB remote protocol does not
support input. Users must disconnect from GDB if this functionality is
required.

 cyg_io_write(handle, buf, len)

This function is used to send data to the device. In the default case, the end-of-line
character "\n" is replaced by the sequence "\n\r".
 cyg_io_get_config(handle, key, buf, len)

This function is used to get information about the channel’s configuration at runtime.

Key:

CYG_IO_GET_CONFIG_TTY_INFO

Buf type:

cyg_tty_info_t

Function:

This function retrieves the current state of the driver.
The key must be “CYG_IO_GET_CONFIG_TTY_INFO” which returns the control
eCos eCos Reference Manual n 121

Serial driver details
flags for the channel. The buffer "buf" must be of type "cyg_tty_info_t" and the length
should match.
Serial driver keys (see above) may also be specified in which case the call is passed
directly to the serial driver.
 cyg_io_set_config(handle, key, buf, len)

This function is used to modify the channel’s configuration at runtime.

Key:

CYG_IO_SET_CONFIG_TTY_INFO

Buf type:

cyg_tty_info_t

Function:

This function changes the current state of the driver.
The key must be CYG_IO_SET_CONFIG_TTY_INFO which returns the control flags for
the channel. The buffer "buf" must be of type cyg_tty_info_t and the length should
match.
Serial driver keys (see above) may also be specified in which case the call is passed
directly to the serial driver.
122 n eCos Reference Manual eCos

How to write a driver

How to write a driver

A device driver is nothing more than a named entity that supports the basic I/O
functions - read, write, get config, and set config. Typically a device driver also uses
and manages interrupts from the device as well. While the interface is generic and
device driver independent, the actual driver implementation is completely up to the
device driver designer.
That said, the reason for using a device driver is to provide access to a device from
application code in as general purpose a fashion as reasonable. Most driver writers are
also concerned with making this access as simple as possible while being as efficient
as possible.
Most device drivers are concerned with the movement of information, for example
data bytes along a serial interface, or packets in a network. In order to make the most
efficient use of system resources, interrupts are used. This can allow for other
application processing to take place while the data transfers are underway, with
interrupts used to indicate when various events have occurred. For example, a serial
port typically generates an interrupt after a character has been sent “down the wire”
and the interface is ready for another. It makes sense to allow further application
processing while the data is being sent since this can take quite a long time. The
interrupt can be used to allow the driver to send a character as soon as the current one
is complete, without any active participation by the application code.
The main building blocks for device drivers are found in the include file:
cyg/io/devtab.h

13
eCos eCos Reference Manual n 123

How to write a driver
All device drivers in eCos are described by a device table entry, using the
“cyg_devtab_entry_t” type. The entry should be created using the DEVTAB_ENTRY
macro, like this:
 DEVTAB_ENTRY(l,name,dep_name,handlers,init,lookup,priv)

Arguments:
 l - The "C" label for this device table entry.
 name - The "C" string name for the device.
 dep_name - For a layered device, the "C" string name of the device this device is built
upon.
 handlers - A pointer to the I/O function "handlers" (see below).
 init - A function called when eCos is initialized. This function can query the device,
setup hardware, etc.
 lookup - A function called when "cyg_io_lookup()" is called for this device.
 priv - A placeholder for any device specific data required by the driver.

The interface to the driver is through the “handlers” field. This is a pointer to a set of
functions which implement the various cyg_io_XXX() routines. This table is defined
by the macro:
 DEVIO_TABLE(l,write,read,get_config,set_config)

Arguments:
 l - The "C" label for this table of handlers.
 write - The function called as a result of "cyg_io_write()".
 read - The function called as a result of "cyg_io_read()".
 get_config - The function called as a result of "cyg_io_get_config()".
 set_config - The function called as a result of "cyg_io_set_config()".

When eCos is initialized (sometimes called “boot” time), the “init” function is called
for all devices in the system. The “init” function is allowed to return an error in which
case the device will be placed “off line” and all I/O requests to that device will be
considered in error.
The “lookup” function is called whenever the cyg_io_lookup() function is called
with this device name. The lookup function may cause the device to come “on line”
which would then allow I/O operations to proceed. Future versions of the I/O system
will allow for other states, including power saving modes, etc.
124 n eCos Reference Manual eCos

How to write a driver
How to write a serial hardware interface
module

The standard serial driver supplied with eCos is structured as a hardware independent
portion and a hardware dependent interface module. To add support for a new serial
port, the user should be able to use the existing hardware independent portion and just
add their own interface module which handles the details of the actual device. The
user should have no need to change the hardware independent portion.
The interfaces used by the serial driver and serial implementation modules are
contained in the file cyg/io/serial.h

NOTE In the text below we use the notation <<xx>> to mean a module specific
value, referred to as “xx” below.

The interface module contains the devtab entry (or entries if a single module supports
more than one interface). This entry should have the form:
 DEVTAB_ENTRY(<<module_name>>,
 <<device_name>>,
 0,
 &serial_devio,
 <<module_init>>,
 <<module_lookup>>,
 &<<serial_channel>>
);

Where:
 module_name - The "C" label for this devtab entry
 device_name - The "C" string for the device. E.g. "/dev/serial0".
 serial_devio - The table of I/O functions. This set is defined in the hardware
independent serial driver and should be used.
 module_init - The module initialization function.
 module_lookup - The device lookup function. This function typically sets up the
device for actual use, turning on interrupts, configuring the port, etc.
 serial_channel - This table (defined below) contains the interface between the
interface module and the serial driver proper.

Each serial device must have a “serial channel”. This is a set of data which describes
all operations on the device. It also contains buffers, etc., if the device is to be
buffered. The serial channel is created by the macro:

SERIAL_CHANNEL_USING_INTERRUPTS(l,funs,dev_priv,baud,stop,parity,word
_length,
 flags,out_buf,out_buflen,in_buf,in_buflen)
eCos eCos Reference Manual n 125

How to write a driver
Arguments:
 l - The "C" label for this structure.
 funs - The set of interface functions (see below).
 dev_priv - A placeholder for any device specific data for this channel.
 baud - The initial baud rate value (cyg_serial_baud_t).
 stop - The initial stop bits value (cyg_serial_stop_bits_t)
 parity - The initial parity mode value (cyg_serial_parity_t)
 word_length - The initial word length value (cyg_serial_word_length_t)
 flags - The initial driver flags value
 out_buf - Pointer to the output buffer. NULL if none required.
 out_buflen - The length of the output buffer.
 in_buf - Pointer to the input buffer. NULL if none required.
 in_buflen - The length of the input buffer.

If either buffer length is zero, no buffering will take place in that direction and only
polled mode functions will be used.
The interface from the hardware independent driver into the hardware interface
module is contained in the "funs" table above. This is defined by the macro:
 SERIAL_FUNS(l,putc,getc,set_config,start_xmit,stop_xmit)

Arguments:
 l - The "C" label for this structure.
 putc - bool (*putc)(serial_channel *priv, unsigned char c)
 This function sends one character to the interface. It should return ’true’ if the
character is actually consumed. It should return ’false’ if there is no space in the
interface
 getc - unsigned char (*getc)(serial_channel *priv)
 This function fetches one character from the interface. It will be only called in a
non-interrupt driven mode, thus it should wait for a character by polling the device
until ready.
 set_config - bool (*set_config)(serial_channel *priv, cyg_serial_info_t *config)
 This function is used to configure the port. It should return ’true’ if the hardware is
updated to match the desired configuration. It should return ’false’ if the port cannot
support some parameter specified by the given configuration. E.g. selecting 1.5 stop
bits and 8 data bits is invalid for most serial devices and should not be allowed.
 start_xmit - void (*start_xmit)(serial_channel *priv)
 In interrupt mode, turn on the transmitter and allow for transmit interrupts.
 stop_xmit - void (*stop_xmit)(serial_channel *priv)
 In interrupt mode, turn off the transmitter.

The device interface module can execute functions in the hardware independent driver
126 n eCos Reference Manual eCos

How to write a driver
via “chan->callbacks”. These functions are available:
void (*serial_init)(

serial_channel *chan)
This function is used to initialize the serial channel. It is only required if the channel is
being used in interrupt mode.

void (*xmt_char)(

serial_channel *chan)
This function would be called from an interrupt handler after a transmit interrupt
indicating that additional characters may be sent. The upper driver will call the "putc"
function as appropriate to send more data to the device.

void (*rcv_char)(

serial_channel *chan,

unsigned char c)
This function is used to tell the driver that a character has arrived at the interface. This
function is typically called from the interrupt handler.
Furthermore, if the device has a FIFO it should require the hardware independent
driver to provide block transfer functionality (driver CDL should include 'implements
CYGINT_IO_SERIAL_BLOCK_TRANSFER). In that case, the following functions
are available as well:
bool (*data_xmt_req)(serial_channel *chan, int space,
 int* chars_avail, unsigned char** chars)
void (*data_xmt_done)(serial_channel *chan)

Instead of calling xmt_char to get a single character for transmission at a time, the
driver should call data_xmt_req in a loop, requesting character blocks for transfer.
Call with 'space' argument of how much space there is available in the FIFO.
If the call returns true, the driver can read 'chars_avail' characters from 'chars' and
copy them into the FIFO.
If the call returns false, there are no more buffered characters and the driver should
continue without filling up the FIFO.
When all data has been unloaded, the driver must call data_rcv_done.
bool (*data_rcv_req)(serial_channel *chan, int avail,
 int* space_avail, unsigned char** space)
void (*data_rcv_done)(serial_channel *chan)

Instead of calling rcv_char with a single character at a time, the driver should call
data_rcv_req in a loop, requesting space to unload the FIFO to. 'avail' is the number of
characters the driver wishes to unload.
If the call returns true, the driver can copy 'space_avail' characters to 'space'.
If the call returns false, the input buffer is full. It is up to the driver to decide what to
eCos eCos Reference Manual n 127

How to write a driver
do in that case (callback functions for registering overflow are being planned for later
versions of the serial driver).
When all data has been unloaded, the driver must call data_rcv_done.
128 n eCos Reference Manual eCos

Device Driver Interface to the Kernel

Device Driver Interface to the
Kernel

This chapter describes the API that device drivers may use to interact with the kernel
and HAL. It is primarily concerned with the control and management of interrupts.
The same API will be present in configurations where the kernel is not present. In this
case the functions will be supplied by code acting directly on the HAL.

Interrupt Model
eCos presents a three level interrupt model to device drivers. This consists of Interrupt
Service Routines (ISRs) that are invoked in response to a hardware interrupt; Deferred
Service Routines (DSRs) that are invoked in response to a request by an ISR; and
threads that are the clients of the driver.
Hardware interrupts are delivered with minimal intervention to an ISR. The HAL
decodes the hardware source of the interrupt and calls the ISR of the attached interrupt
object. This ISR may manipulate the hardware but is only allowed to make a restricted
set of calls on the driver API. When it returns, an ISR may request that its DSR should
be scheduled to run.
A DSR will be run when it is safe to do so without interfering with the scheduler. Most
of the time the DSR will run immediately after the ISR, but if the current thread is in

14
eCos eCos Reference Manual n 129

Device Driver Interface to the Kernel
the scheduler, it will be delayed until the thread is finished. A DSR is allowed to make
a larger set of driver API calls, including, in particular, being able to call
cyg_drv_cond_signal() to wake up waiting threads.
Finally, threads are able to make all API calls and in particular are allowed to wait on
mutexes and condition variables.
For a device driver to receive interrupts it must first define ISR and DSR routines as
shown below, and then call cyg_drv_interrupt_create(). Using the handle
returned, the driver must then call cyg_drv_interrupt_attach() to actually attach
the interrupt to the hardware vector.

Synchronization
There are three levels of synchronization supported:

1. Synchronization with ISRs. This normally means disabling interrupts to prevent
the ISR running during a critical section. On a multiprocessor this will also
require a spinlock. This is implemented by the cyg_drv_isr_lock() and
cyg_drv_isr_unlock() functions. This mechanism should be used sparingly and
for short periods only.

2. Synchronization with DSRs. This will be implemented in the kernel by taking the
scheduler lock to prevent DSRs running during critical sections. In non-kernel
configurations it will be implemented by non-kernel code. This is implemented by
the cyg_drv_dsr_lock() and cyg_drv_dsr_unlock() functions. As with ISR
synchronization, this mechanism should be used sparingly.

3. Synchronization with threads. This is implemented with mutexes and condition
variables. Only threads may lock the mutexes and wait on the condition variables,
although DSRs may signal condition variables.

ISRs are run with interrupts disabled, so it is not necessary to call
cyg_drv_isr_lock() in an ISR. Similarly DSRs are run with the scheduler lock
taken, so it is not necessary to call cyg_drv_dsr_lock() in DSRs.

Device Driver Models
There are several ways in which device drivers may be built. The exact model chosen
will depend on the properties of the device and the behavior desired. There are three
basic models that may be adopted.
The first model is to do all device processing in the ISR. When it is invoked the ISR
programs the device hardware directly and accesses data to be transferred directly in
130 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
memory. The ISR should also call cyg_drv_interrupt_acknowledge(). When it is
finished it may optionally request that its DSR be invoked. The DSR does nothing but
call cyg_drv_cond_signal() to cause a thread to be woken up. Thread level code
must call cyg_drv_isr_lock(), or cyg_drv_interrupt_mask() to prevent ISRs
running while it manipulates shared memory.
The second model is to defer device processing to the DSR. The ISR simply prevents
further delivery of interrupts by either programming the device, or by calling
cyg_drv_interrupt_mask(). It may then call cyg_drv_interrupt_acknowledge()
to allow other interrupts to be delivered and request that its DSR be called. When the
DSR runs it does the majority of the device handling, optionally signals a condition
variable to wake a thread, and finishes by calling cyg_drv_interrupt_unmask() to
re-allow device interrupts. Thread level code uses cyg_drv_dsr_lock() to prevent
DSRs running while it manipulates shared memory.
The third model is to defer device processing even further to a thread. The ISR
behaves exactly as in the previous model and simply blocks and acknowledges the
interrupt before request that the DSR run. The DSR itself only calls
cyg_drv_cond_signal() to wake the thread. When the thread awakens it performs all
device processing, and has full access to all kernel facilities while it does so. It should
finish by calling cyg_drv_interrupt_unmask() to re-allow device interrupts.
The first model is good for devices that need immediate processing and interact
infrequently with thread level. The second model trades a little latency in dealing with
the device for a less intrusive synchronization mechanism. The last model allows
device processing to be scheduled with other threads and permits more complex
device handling.

Synchronization Levels
Since it would be dangerous for an ISR or DSR to make a call that might reschedule
the current thread (by trying to lock a mutex for example) all functions in this API
have an associated synchronization level. These levels are:

Thread

This function may only be called from within threads. This is usually the client
code that makes calls into the device driver. In a non-kernel configuration, this
will be code running at the default non-interrupt level.

DSR

This function may be called by either DSR or thread code.

ISR

This function may be called from ISR, DSR or thread code.
eCos eCos Reference Manual n 131

Device Driver Interface to the Kernel
The following table shows, for each API function, the levels at which is may be
called:
 Callable from:
Function ISR DSR Thread

cyg_drv_isr_lock X X
cyg_drv_isr_unlock X X
cyg_drv_dsr_lock X
cyg_drv_dsr_unlock X
cyg_drv_mutex_init X
cyg_drv_mutex_destroy X
cyg_drv_mutex_lock X
cyg_drv_mutex_trylock X
cyg_drv_mutex_unlock X
cyg_drv_mutex_release X
cyg_drv_cond_init X
cyg_drv_cond_destroy X
cyg_drv_cond_wait X
cyg_drv_cond_signal X X
cyg_drv_cond_broadcast X X
cyg_drv_interrupt_create X
cyg_drv_interrupt_delete X
cyg_drv_interrupt_attach X X X
cyg_drv_interrupt_detach X X X
cyg_drv_interrupt_mask X X X
cyg_drv_interrupt_unmask X X X
cyg_drv_interrupt_acknowledge X X X
cyg_drv_interrupt_configure X X X
cyg_drv_interrupt_level X X X

The API
This section details the Driver Kernel Interface. Note that most of these functions are
identical to Kernel C API calls, and will in most configurations be wrappers for them.
In non-kernel configurations they will be supported directly by the HAL, or by code to
emulate the required behavior.
This API is defined in the header file cyg/hal/drv_api.h.

cyg_drv_isr_lock
Function:
void cyg_drv_isr_lock()
132 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
Arguments:

None

Result:

None

Level:

DSR

Description:

Disables delivery of interrupts, preventing all ISRs running. This function
maintains a counter of the number of times it is called.

cyg_drv_isr_unlock
Function:
void cyg_drv_isr_unlock()

Arguments:

None

Result:

None

Level:

DSR

Description:

Re-enables delivery of interrupts, allowing ISRs to run. This function decrements
the counter maintained by cyg_drv_isr_lock(), and only re-allows interrupts
when it goes to zero.

cyg_drv_dsr_lock
Function:
void cyg_drv_dsr_lock()

Arguments:

None

Result:

None

Level:

Thread

Description:
eCos eCos Reference Manual n 133

Device Driver Interface to the Kernel
Disables scheduling of DSRs. This function maintains a counter of the number of
times it has been called.

cyg_drv_dsr_unlock
Function:
void cyg_drv_dsr_unlock()

Arguments:

None

Result:

None

Level:

Thread

Description:

Re-enables scheduling of DSRs. This function decrements the counter
incremented by cyg_drv_dsr_lock(). DSRs are only allowed to be delivered
when the counter goes to zero.

cyg_drv_mutex_init
Function:
void cyg_drv_mutex_init(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to initialize

Result:

None

Level:

Thread

Description:

Initialize the mutex pointer to by the mutex argument.

cyg_drv_mutex_destroy
Function:
void cyg_drv_mutex_destroy(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to destroy

Result:
134 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
None

Level:

Thread

Description:

Destroy the mutex pointed to by the mutex argument.

cyg_drv_mutex_lock
Function:
cyg_bool cyg_drv_mutex_lock(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to lock

Result:

TRUE it the thread has claimed the lock, FALSE otherwise.

Level:

Thread

Description:

Attempt to lock the mutex pointed to by the mutex argument. If the mutex is
already locked by another thread then this thread will wait until that thread is
finished. If the result from this function is FALSE then the thread was broken out
of its wait by some other thread. In this case the mutex will not have been locked.

cyg_drv_mutex_trylock
Function:
cyg_bool cyg_drv_mutex_trylock(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to lock

Result:

TRUE if the mutex has been locked, FALSE otherwise.

Level:

Thread

Description:

Attempt to lock the mutex pointed to by the mutex argument without waiting. If
the mutex is already locked by some other thread then this function returns
FALSE. If the function can lock the mutex without waiting, then TRUE is
returned.
eCos eCos Reference Manual n 135

Device Driver Interface to the Kernel
cyg_drv_mutex_unlock
Function:
void cyg_drv_mutex_unlock(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to unlock

Result:

None

Level:

Thread

Description:

Unlock the mutex pointed to by the mutex argument. If there are any threads
waiting to claim the lock, one of them is woken up to try and claim it.

cyg_drv_mutex_release
Function:
void cyg_drv_mutex_release(cyg_drv_mutex *mutex)

Arguments:

mutex - pointer to mutex to release

Result:

None

Level:

Thread

Description:

Release all threads waiting on the mutex pointed to by the mutex argument. These
threads will return from cyg_drv_mutex_lock() with a FALSE result and will
not have claimed the mutex. This function has no effect on any thread that may
have the mutex claimed.

cyg_drv_cond_init
Function:
 void cyg_drv_cond_init(cyg_drv_cond *cond,
 cyg_drv_mutex *mutex)

Arguments:

cond—condition variable to initialize
136 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
mutex—mutex to associate with this condition variable

Result:

None

Level:

Thread

Description:

Initialize the condition variable pointed to by the cond argument. The mutex
argument must point to a mutex with which this condition variable is associated.
A thread may only wait on this condition variable when it has already locked the
associated mutex. Waiting will cause the mutex to be unlocked, and when the
thread is reawakened, it will automatically claim the mutex before continuing.

cyg_drv_cond_destroy
Function:
 void cyg_drv_cond_destroy(cyg_drv_cond *cond)

Arguments:

cond - condition variable to destroy

Result:

None

Level:

Thread

Description:

Destroy the condition variable pointed to by the cond argument.

cyg_drv_cond_wait
Function:
void cyg_drv_cond_wait(cyg_drv_cond *cond)

Arguments:

cond - condition variable to wait on

Result:

None

Level:

Thread

Description:

Wait for a signal on the condition variable pointed to by the cond argument. The
eCos eCos Reference Manual n 137

Device Driver Interface to the Kernel
thread must have locked the associated mutex before waiting on this condition
variable. While the thread waits, the mutex will be unlocked, and will be
re-locked before this function returns. It is possible for threads waiting on a
condition variable to occasionally wake up spuriously. For this reason it is
necessary to use this function in a loop that re-tests the condition each time it
returns. Note that this function performs an implicit scheduler unlock/relock
sequence, so that it may be used within an explicit
cyg_drv_dsr_lock()...cyg_drv_dsr_unlock() structure.

cyg_drv_cond_signal
Function:
void cyg_drv_cond_signal(cyg_drv_cond *cond)

Arguments:

cond - condition variable to signal

Result:

None

Level:

DSR

Description:

Signal the condition variable pointed to by the cond argument. If there are any
threads waiting on this variable at least one of them will be awakened. Note that in
some configurations there may not be any difference between this function and
cyg_drv_cond_broadcast().

cyg_drv_cond_broadcast
Function:
void cyg_drv_cond_broadcast(cyg_drv_cond *cond)

Arguments:

cond - condition variable to broadcast to

Result:

None

Level:

DSR

Description:

Signal the condition variable pointed to by the cond argument. If there are any
threads waiting on this variable they will all be awakened.
138 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
cyg_drv_interrupt_create
Function:
 void cyg_drv_interrupt_create(
 cyg_vector_t vector,
 cyg_priority_t priority,
 cyg_addrword_t data,
 cyg_ISR_t *isr,
 cyg_DSR_t *dsr,
 cyg_handle_t *handle,
 cyg_interrupt *intr
)

Arguments:

vector—vector to attach to

priority—queueing priority

data—data pointer

isr—interrupt service routine

dsr—deferred service routine

handle—returned handle

intr—put interrupt object here

Result:

None

Level:

Thread

Description:

Create an interrupt object and returns a handle to it. The object contains
information about which interrupt vector to use and the ISR and DSR that will be
called after the interrupt object is attached. The interrupt object will be allocated
in the memory passed in the intr parameter. The interrupt object is not
immediately attached; it must be attached with the cyg_interrupt_attach()
call.

cyg_drv_interrupt_delete
Function:
 void cyg_drv_interrupt_delete(cyg_handle_t interrupt)

Arguments:

interrupt—interrupt to delete
eCos eCos Reference Manual n 139

Device Driver Interface to the Kernel
Result:

None

Level:

Thread

Description:

Detach the interrupt from the vector and free the memory passed in the intr
argument to cyg_drv_interrupt_create() for reuse.

cyg_drv_interrupt_attach
Function:
void cyg_drv_interrupt_attach(cyg_handle_t interrupt)

Arguments:

interrupt—interrupt to attach

Result:

None

Level:

ISR

Description:

Attach the interrupt to the vector so that interrupts will be delivered to the ISR
when the interrupt occurs.

cyg_drv_interrupt_detach
Function:
void cyg_drv_interrupt_detach(cyg_handle_t interrupt)

Arguments:

interrupt—interrupt to detach

Result:

None

Level:

ISR

Description:

Detach the interrupt from the vector so that interrupts will no longer be delivered
to the ISR.
140 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
cyg_drv_interrupt_mask
Function:
void cyg_drv_interrupt_mask(cyg_vector_t vector)

Arguments:

vector—vector to mask

Result:

None

Level:

ISR

Description:

Program the interrupt controller to stop delivery of interrupts on the given vector.
On architectures which implement interrupt priority levels this may also disable
all lower priority interrupts.

cyg_drv_interrupt_unmask
Function:
void cyg_drv_interrupt_unmask(cyg_vector_t vector)

Arguments:

vector—vector to unmask

Result:

None

Level:

ISR

Description:

Program the interrupt controller to re-allow delivery of interrupts on the given
vector.

cyg_drv_interrupt_acknowledge
Function:
void cyg_drv_interrupt_acknowledge(cyg_vector_t vector)

Arguments:

vector—vector to acknowledge

Result:
eCos eCos Reference Manual n 141

Device Driver Interface to the Kernel
None

Level:

ISR

Description:

Perform any processing required at the interrupt controller and in the CPU to
cancel the interrupt request. An ISR may also need to program the hardware of the
device to prevent an immediate re-triggering of the interrupt.

cyg_drv_interrupt_configure
Function:
void cyg_drv_interrupt_configure(
 cyg_vector_t vector,
 cyg_bool_t level,
 cyg_bool_t up
)

Arguments:

vector—vector to configure

level—level or edge triggered

up—rising/falling edge, high/low level

Result:

None

Level:

ISR

Description:

Program the interrupt controller with the characteristics of the interrupt source.
The level argument chooses between level- or edge-triggered interrupts. The up
argument chooses between high and low level for level triggered interrupts or
rising and falling edges for edge triggered interrupts. This function only works
with interrupt controllers that can control these parameters.

cyg_drv_interrupt_level
Function:
void cyg_drv_interrupt_level(
 cyg_vector_t vector,
 cyg_priority_t level
)
142 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
Arguments:

vector—vector to configure

level—level to set

Result:

None

Level:

ISR

Description:

Program the interrupt controller to deliver the given interrupt at the supplied
priority level. This function only works with interrupt controllers that can control
this parameter.

cyg_ISR_t
Type:
typedef cyg_uint32 cyg_ISR_t(
 cyg_vector_t vector,
 cyg_addrword_t data
)

Fields:

vector—vector being delivered

data—data value supplied by client

Result:

Bit mask indicating whether interrupt was handled and whether the DSR should
be called.

Description:

Interrupt Service Routines definition. A pointer to a function with this prototype is
passed to cyg_interrupt_create() when an interrupt object is created. When an
interrupt is delivered the function will be called with the vector number and the
data value that was passed to cyg_interrupt_create().

The return value is a bit mask containing one or both of the following bits:

CYG_ISR_HANDLED

indicates that the interrupt was handled by this ISR. It is a configuration option
whether this will prevent further ISR being run.

CYG_ISR_CALL_DSR

causes the DSR that was passed to cyg_interrupt_create() to be scheduled to
eCos eCos Reference Manual n 143

Device Driver Interface to the Kernel
be called.

cyg_DSR_t
Type:
 typedef void cyg_DSR_t(
 cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data
)

Fields:

vector—vector being delivered

count—number of times DSR has been scheduled

data—data value supplied by client

Result:

None

Description:

Deferred Service Routine definition. A pointer to a function with this prototype is
passed to cyg_interrupt_create() when an interrupt object is created. When
the ISR request the scheduling of its DSR, this function will be called at some
later point. In addition to the vector and data arguments, which will be the same as
those passed to the ISR, this routine is also passed a count of the number of times
the ISR has requested that this DSR be scheduled. This counter is zeroed each
time the DSR actually runs, so it indicates how many interrupts have occurred
since it last ran.
144 n eCos Reference Manual eCos

Device Driver Interface to the Kernel
Part V: The ISO Standard C and
Math Libraries
eCos eCos Reference Manual n 145

C and math library overview

C and math library overview

eCos provides compatibility with the ISO 9899:1990 specification for the standard C
library, which is essentially the same as the better-known ANSI C3.159-1989
specification (C-89).
There are three aspects of this compatibility supplied by eCos. First there is a C
library which implements the functions defined by the ISO standard, except for the
mathematical functions. This is provided by the eCos C library package.
Then eCos provides a math library, which implements the mathematical functions
from the ISO C library. This distinction between C and math libraries is frequently
drawn — most standard C library implementations provide separate linkable files for
the two, and the math library contains all the functions from the math.h header file.
There is a third element to the ISO C library, which is the environment in which
applications run when they use the standard C library. This environment is set up by
the C library startup procedure (see “C library startup” on page 153) and it provides
(among other things) a main() entry point function, an exit() function that does the
cleanup required by the standard (including handlers registered using the atexit()
function), and an environment that can be read with getenv().
The description in this manual focuses on the eCos-specific aspects of the C library
(mostly related to eCos's configurability) as well as mentioning the omissions from
the standard in this release. We do not attempt to define the semantics of each
function, since that information can be found in the ISO, ANSI, POSIX and IEEE
standards, and the many good books that have been written about the standard C

15
146 n eCos Reference Manual eCos

library, that cover usage of these functions in a more general and useful way.

Omitted functionality
The ISO C functionality that is currently omitted in the C library can be grouped by
the header files in which they are declared:

stdio.h
remove()

rename()

tmpfile()

tmpnam()

fseek()

ftell()

rewind()

fgetpos()

fsetpos()

Most of these functions are omitted because they only apply to disk-based file
systems. These will be supported in a future version of eCos.

stdlib.h
mblen()

mbtowc()

wctomb()

mbstowcs()

wcstombs()

MB_CUR_MAX

All of these functions are related to multibyte and wide character support.

Included non-ISO functions
The following functions from the POSIX specification are included for convenience:
extern char **environ variable (for setting up the environment for use with
getenv())
_exit()
strtok_r()
rand_r()
asctime_r()
eCos eCos Reference Manual n 147

C and math library overview
ctime_r()
localtime_r()
gmtime_r()
eCos provides the following additional implementation-specific functions within the
standard C library to adjust the date and time settings:

void cyg_libc_time_setdst(

cyg_libc_time_dst state);

This function sets the state of Daylight Savings Time. The values for state are:
CYG_LIBC_TIME_DSTNA unknown

CYG_LIBC_TIME_DSTOFF off

CYG_LIBC_TIME_DSTON on

void cyg_libc_time_setzoneoffsets(

time_t stdoffset, time_t dstoffset);

This function sets the offsets from UTC used when Daylight Savings Time is enabled
or disabled. The offsets are in time_t’s, which are seconds in the current
inplementation.

Cyg_libc_time_dst cyg_libc_time_getzoneoffsets(

time_t *stdoffset, time_t *dstoffset);

This function retrieves the current setting for Daylight Savings Time along with the
offsets used for both STD and DST. The offsets are both in time_t’s, which are
seconds in the current implementation.

cyg_bool cyg_libc_time_settime(

time_t utctime);

This function sets the current time for the system The time is specified as a time_t in
UTC. It returns non-zero on error.

Math library compatibility modes
This math library is capable of being operated in several different compatibility
modes. These options deal solely with how errors are handled.
There are 4 compatibility modes: ANSI/POSIX 1003.1; IEEE-754; X/Open
Portability Guide issue 3 (XPG3); and System V Interface Definition Edition 3.
In IEEE mode, the matherr() function (see below) is never called, no warning
messages are printed on the stderr output stream, and errno is never set.
In ANSI/POSIX mode, errno is set correctly, but matherr() is never called and no
warning messages are printed on the stderr output stream.
148 n eCos Reference Manual eCos

C and math library overview
In X/Open mode, errno is set correctly, matherr() is called, but no warning messages
are printed on the stderr output stream.
In SVID mode, functions which overflow return a value HUGE (defined in math.h),
which is the maximum single precision floating point value (as opposed to
HUGE_VAL which is meant to stand for infinity). errno is set correctly and matherr()
is called. If matherr() returns 0, warning messages are printed on the stderr output
stream for some errors.
The mode can be compiled-in as IEEE-only, or any one of the above methods settable
at run-time.

NOTE This math library assumes that the hardware (or software floating point
emulation) supports IEEE-754 style arithmetic, 32-bit 2’s complement integer
arithmetic, doubles are in 64-bit IEEE-754 format.

matherr()
As mentioned above, in X/Open or SVID modes, the user can supply a function
matherr() of the form:

int matherr(

struct exception *e)
where struct exception is defined as:

struct exception {
 int type;
 char *name;
 double arg1, arg2, retval;
};

type is the exception type and is one of:

DOMAIN

argument domain exception

SING

argument singularity

OVERFLOW

overflow range exception

UNDERFLOW

underflow range exception

TLOSS

total loss of significance

PLOSS
eCos eCos Reference Manual n 149

C and math library overview
partial loss of significance
name is a string containing the name of the function
arg1 and arg2 are the arguments passed to the function
retval is the default value that will be returned by the function, and can be changed
by matherr()

NOTE matherr must have “C” linkage, not “C++” linkage.
If matherr returns zero, or the user doesn't supply their own matherr, then the
following usually happens in SVID mode:

Table 1: Behavior of math exception handling

X/Open mode is similar except that the message is not printed on stderr and
HUGE_VAL is used in place of HUGE

Thread-safety and re-entrancy
With the appropriate configuration options set below, the math library is fully
thread-safe if:
n Depending on the compatibility mode, the setting of the errno variable from the C

library is thread-safe
n Depending on the compatibility mode, sending error messages to the stderr output

stream using the C library fputs() function is thread-safe
n Depending on the compatibility mode, the user-supplied matherr() function and

anything it depends on are thread-safe
In addition, with the exception of the gamma*() and lgamma*() functions, the math
library is reentrant (and thus safe to use from interrupt handlers) if the Math library is
always in IEEE mode.

Type Behavior

DOMAIN 0.0 returned, errno=EDOM, and a message printed on stderr

SING HUGE of appropriate sign is returned, errno=EDOM, and a
message is printed on stderr

OVERFLOW HUGE of appropriate sign is returned, and errno=ERANGE

UNDERFLOW 0.0 is returned and errno=ERANGE

TLOSS 0.0 is returned, errno=ERANGE, and a message is printed on
stderr

PLOSS The current implementation doesn't return this type
150 n eCos Reference Manual eCos

C and math library overview
Some implementation details
Here are some details about the implementation which might be interesting, although
they do not affect the ISO-defined semantics of the library.
n It is possible to configure eCos to have the standard C library without the kernel.

You might want to do this to use less memory. But if you disable the kernel, you
will be unable to use memory allocation, thread-safety and certain stdio functions
such as input. Other C library functionality is unaffected.

n The opaque type returned by clock() is called clock_t, and is implemented as a
64 bit integer. The value returned by clock() is only correct if the kernel is
configured with real-time clock support, as determined by the
CYGVAR_KERNEL_COUNTERS_CLOCK configuration option in kernel.h.

n The FILE type is not implemented as a structure, but rather as a
CYG_ADDRESS.

n The GNU C compiler will place its own built-in implementations instead of some
C library functions. This can be turned off with the -fno-builtin option. The
functions affected by this are abs(), cos(), fabs(), labs(), memcmp(),
memcpy(), sin(), sqrt(), strcmp(), strcpy(), and strlen().

n For faster execution speed you should avoid this option and let the compiler use
its built-ins. This can be turned off by invoking GCC with the -fno-builtin option.

n memcpy() and memset() are located in the infrastructure package, not in the C
library package. This is because the compiler calls these functions, and the kernel
needs to resolve them even if the C library is not configured.

n Error codes such as EDOM and ERANGE, as well as strerror(), are implemented
in the error package. The error package is separate from the rest of the C and math
libraries so that the rest of eCos can use these error handling facilities even if the
C library is not configured.

n When free() is invoked, heap memory will normally be coalesced. If the
CYGSEM_KERNEL_MEMORY_COALESCE configuration parameter is not set,
memory will not be coalesced, which might cause programs to fail.

n Signals, as implemented by <signal.h>, are guaranteed to work correctly if
raised using the raise() function from a normal working program context. Using
signals from within an ISR or DSR context is not expected to work. Also, it is not
guaranteed that if CYGSEM_LIBC_SIGNALS_HWEXCEPTIONS is set, that
handling a signal using signal() will necessarily catch that form of exception.
For example, it may be expected that a divide-by-zero error would be caught by
handling SIGFPE. However it depends on the underlying HAL implementation to
implement the required hardware exception. And indeed the hardware itself may
eCos eCos Reference Manual n 151

C and math library overview
not be capable of detecting these exceptions so it may not be possible for the HAL
implementer to do this in any case. Despite this lack of guarantees in this respect,
the signals implementation is still ISO C compliant since ISO C does not offer any
such guarantees either.

n The getenv() function is implemented (unless the
CYGPKG_LIBC_ENVIRONMENT configuration option is turned off), but there is
no shell or putenv() function to set the environment dynamically. The
environment is set in a global variable environ, declared as:

extern char **environ; // Standard environment definition

The environment can be statically initialized at startup time using the
CYGDAT_LIBC_DEFAULT_ENVIRONMENT option. If so, remember that the
final entry of the array initializer must be NULL.

Here is a minimal eCos program which demonstrates the use of environments (see
also the test case in language/c/libc/current/tests/stdlib/getenv.c):

#include <stdio.h>
#include <stdlib.h> // Main header for stdlib functions

extern char **environ; // Standard environment definition

int
main(int argc, char *argv[])
{
 char *str;
 char *env[] = { "PATH=/usr/local/bin:/usr/bin",
 "HOME=/home/fred",
 "TEST=1234=5678",
 "home=hatstand",
 NULL };

 printf("Display the current PATH environment variable\n");

 environ = (char **)&env;

 str = getenv("PATH");

 if (str==NULL) {
 printf("The current PATH is unset\n");
 } else {
 printf("The current PATH is \"%s\"\n", str);
 }
 return 0;
}
152 n eCos Reference Manual eCos

C and math library overview
Thread safety
The ISO C library has configuration options that control thread safety, i.e. working
behavior if multiple threads call the same function at the same time.
The following functionality has to be configured correctly, or used carefully in a
multi-threaded environment:
n printf() (and all standard I/O functions except for sprintf() and sscanf()
n strtok()

n rand() and srand()
n signal() and raise()
n asctime(), ctime(), gmtime(), and localtime()
n the errno variable
n the environ variable
n date and time settings
In some cases, to make eCos development easier, functions are provided (as specified
by POSIX 1003.1) that define re-entrant alternatives, i.e. rand_r(), strtok_r(),
asctime_r(), ctime_r(), gmtime_r(), and localtime_r(). In other cases,
configuration options are provided that control either locking of functions or their
shared data, such as with standard I/O streams, or by using per-thread data, such as
with the errno variable.
In some other cases, like the setting of date and time, no re-entrant or thread-safe
alternative or configuration is provided as it is simply not a worthwhile addition (date
and time should rarely need to be set.)

C library startup
The C library includes a function declared as:

void cyg_iso_c_start(void)

This function is used to start an environment in which an ISO C style program can run
in the most compatible way.
What this function does is to create a thread which will invoke main() — normally
considered a program's entry point. In particular, it can supply arguments to main()
using the CYGDAT_LIBC_ARGUMENTS configuration option (see “Option:
Arguments to main()”, in Section V), and when returning from main(), or calling
exit(), pending stdio file output is flushed and any functions registered with
atexit() are invoked. This is all compliant with the ISO C standard in this respect.
This thread starts execution when the eCos scheduler is started. If the eCos kernel
eCos eCos Reference Manual n 153

C and math library overview
package is not available (and hence there is no scheduler), then cyg_iso_c_start()
will invoke the main() function directly, i.e. it will not return until the main()
function returns.
The main() function should be defined as the following, and if defined in a C++ file,
should have “C” linkage:

extern int main(

int argc,

char *argv)[]
The thread that is started by cyg_iso_c_start() can be manipulated directly, if you
wish. For example you can suspend it. The kernel C API needs a handle to do this,
which is available by including the following in your source code.
extern cyg_handle_t cyg_libc_main_thread;

Then for example, you can suspend the thread with the line:
cyg_thread_suspend(cyg_libc_main_thread);

If you call cyg_iso_c_start() and do not provide your own main() function, the
system will provide a main() for you which will simply return immediately.
In the default configuration, cyg_iso_c_start() is invoked automatically by the
cyg_package_start() function in the infrastructure configuration. This means that in
the simplest case, your program can indeed consist of simply:
int main(int argc, char *argv[])
{
 printf("Hello eCos\n");
}

If you override cyg_package_start() or cyg_start(), or disable the infrastructure
configuration option CYGSEM_START_ISO_C_COMPATIBILITY then you must
ensure that you call cyg_iso_c_start() yourself if you want to be able to have your
program start at the entry point of main() automatically.
154 n eCos Reference Manual eCos

Index

A
alarms 6, 37
API

µITRON 51
serial driver details 116
tty driver details 121
user 112

architectural porting 89
assertions 20

C
C library

ISO standard 146
omitted functionality 147

startup 153
clocks 6, 36

real-time (RTC) 6
condition variables 40
counters 6, 34
cyg_addrword_t 25
cyg_alarm 26
cyg_alarm_t 27
cyg_bool_t 25
cyg_clock 26
cyg_code_t 25
cyg_cond_t 26
cyg_counter 26
cyg_drv_cond_broadcast 138

cyg_drv_cond_destroy 137
cyg_drv_cond_init 136
cyg_drv_cond_signal 138
cyg_drv_cond_wait 137
cyg_drv_dsr_lock 133
cyg_drv_dsr_unlock 134
cyg_drv_interrupt_acknowledge 141
cyg_drv_interrupt_attach 140
cyg_drv_interrupt_configure 142
cyg_drv_interrupt_create 139
cyg_drv_interrupt_delete 139
cyg_drv_interrupt_detach 140
cyg_drv_interrupt_level 142
cyg_drv_interrupt_mask 141
cyg_drv_interrupt_unmask 141
cyg_drv_isr_lock 132
cyg_drv_isr_unlock 133
cyg_drv_mutex_destroy 134
cyg_drv_mutex_init 134
cyg_drv_mutex_lock 135
cyg_drv_mutex_release 136
cyg_drv_mutex_trylock 135
cyg_drv_mutex_unlock 136
cyg_DSR_t 27, 144
cyg_exception_handler_t 26
cyg_handle_t 25
cyg_interrupt 26
cyg_io_get_config 113
cyg_io_lookup 112
eCos eCos Reference Manual ■ 155

cyg_io_read 113
cyg_io_set_config 113
cyg_io_write 112
cyg_ISR_t 27, 143
cyg_mbox 26
cyg_mempool_fix 26
cyg_mempool_info 26
cyg_mempool_var 26
cyg_mutex_lock() 19
cyg_mutex_t 26
cyg_package_start() 22
cyg_prestart() 22
cyg_priority_t 25
cyg_resolution_t 27
cyg_sem_t 26
cyg_semaphore_post() 19
cyg_start() 21
cyg_thread 26
cyg_thread_create 28
cyg_thread_entry_t 26
cyg_tick_count_t 25
cyg_user_start() 17, 23
cyg_vector_t 25
cyg_VSR_t 27

D
Deferred Service Routines (DSRs) 3, 94, 129
device drivers

building 130
handlers field 124
interrupt model 129
writing 123

Driver Kernel Interface 132
drivers

simple serial 114
tty 120

E
exception handling 4, 31

default 81
exceptions 18, 80

F
functions

interrupt management 59

memory pool management 60
network support 65
non-ISO POSIX 147
synchronization and communication 56

extended 59
system management 64
task management 53
task-dependent synchronization 55
time management 63

G
GDB stubs

building 93
writing 89

H
HAL

architectural files 67
architecture 66
future developments 83
implementation 66
platform 66
source files 13

architecture 14
platform 15

system startup 21, 79
handles, I/O 112
Hardware Abstraction Layer (HAL) 66

I
interrupt

handling 5, 32
default 81

management functions 59
model 94

Interrupt Service Routines (ISRs) 3, 94, 129
interrupts 18

K
kapi.h 17
kernel

C API 24
headers 7
overview 2
156 ■ eCos Reference Manual eCos

porting 85
adding configuration information 86
architectural support 86
memory layout information 88
package-specific configuration 88
platform support 85

scheduler 2
source files 10

common subdirectory 11
emory management subdirectory 12
instrumentation subdirectory 12
interrupt subdirectory 11
sched subdirectory 10
sload subdirectory 13
synchronization subdirectory 11
trace subdirectory 13

L
libraries

ISO standard C 146
math 146

M
math library 146

compatibility modes
ANSI/POSIX 148
IEEE 148
SVID 149
X/Open 149

implementation details 151
matherr() 149
memory allocation 19
memory pools 42

management functions 60
message boxes 45
µITRON 47, 51
mutexes 39

N
network support functions 65
network time protocol (NTP) 6

P
pkgconf 87
platform porting 88
porting

architectures 89
kernel 85
platforms 88

priority manipulation 31

R
requirements when writing eCos programs 17

S
Scheduler::lock() 3
Scheduler::sched_lock 2
Scheduler::unlock() 3
serial drivers

configuration fields
baud 115
flags 116
parity 115
stop 115
word_length 115

interface module, writing 125
source files

HAL 13
architecture files 14
platform files 15

synchronization 130
and communication functions 56

extended 59
condition variables 40
flags 47
mutexes 39
semaphores 38
task-dependent functions 55
thread 3

system management functions 64
system startup

cyg_package_start() 22
cyg_prestart() 22
cyg_start() 21
cyg_user_start() 23
HAL 21
eCos eCos Reference Manual ■ 157

T
task management functions 53
task-dependent synchronization functions 55
thread operations 27
threads

mutex priority inheritance 4
priority ceiling protocol 3
priority inheritance protocol 3
priority inversion 3
safety 153
synchronizing 3

time management functions 63
timers 6
tty driver 120

configuration fields
tty_in_flags 120
tty_out_flags 120

types
cyg_addrword_t 25
cyg_alarm 26
cyg_alarm_t 27
cyg_bool_t 25
cyg_clock 26
cyg_code_t 25
cyg_cond_t 26
cyg_counter 26
cyg_DSR_t 27

cyg_exception_handler_t 26
cyg_handle_t 25
cyg_interrupt 26
cyg_ISR_t 27
cyg_mbox 26
cyg_mempool_fix 26
cyg_mempool_info 26
cyg_mempool_var 26
cyg_mutex_t 26
cyg_priority_t 25
cyg_resolution_t 27
cyg_sem_t 26
cyg_thread 26
cyg_thread_entry_t 26
cyg_tick_count_t 25
cyg_vector_t 25
cyg_VSR_t 27

U
user API 112

V
Vector Service Routines (VSRs) 19
vectors 18, 80
158 ■ eCos Reference Manual eCos

	eCos‘ Reference Manual
	Copying terms
	Trademarks

	Contents
	Part I: Preliminaries
	eCos kernel overview
	A tour of the kernel sources

	Part II: Kernel APIs
	Requirements for programs
	System start-up
	Native kernel C language API
	mITRON API
	The eCos Hardware Abstraction Layer (HAL)
	eCos Interrupt Model

	Part III: PCI Library
	The eCos PCI Library

	Part IV: I/O Package (Device Drivers)
	Introduction
	User API
	Serial driver details
	How to write a driver
	Device Driver Interface to the Kernel

	Part V: The ISO Standard C and Math Libraries
	C and math library overview
	Index

